• Advanced Photonics
  • Vol. 3, Issue 6, 066001 (2021)
Liang Xu1、2、3、4、5、†, Huichao Xu1、2、3、4、6, Jie Xie1、2、3、4, Hui Li1、2、3、4, Lin Zhou1、2、3、4, Feixiang Xu1、2、3、4, and Lijian Zhang1、2、3、4、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
  • 2Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 3Nanjing University, National Laboratory of Solid State Microstructures, Nanjing, China
  • 4Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing, China
  • 5Research Center for Quantum Sensing, Zhejiang Laboratory, Hangzhou, China
  • 6Purple Mountain Laboratories, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.3.6.066001 Cite this Article Set citation alerts
    Liang Xu, Huichao Xu, Jie Xie, Hui Li, Lin Zhou, Feixiang Xu, Lijian Zhang. Direct characterization of coherence of quantum detectors by sequential measurements[J]. Advanced Photonics, 2021, 3(6): 066001 Copy Citation Text show less
    References

    [1] A. Ourjoumtsev et al. Generation of optical ‘Schrödinger cats’ from photon number states. Nature, 448, 784-786(2007).

    [2] E. Bimbard et al. Quantum-optical state engineering up to the two-photon level. Nat. Photonics, 4, 243-247(2010).

    [3] A. E. Ulanov et al. Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect. Nat. Commun., 7, 11925(2016).

    [4] B. L. Higgins et al. Entanglement-free Heisenberg-limited phase estimation. Nature, 450, 393-396(2007).

    [5] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [6] K. J. Resch et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett., 98, 223601(2007).

    [7] P. Kok et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).

    [8] A. Zhang et al. Experimental test of contextuality in quantum and classical systems. Phys. Rev. Lett., 122, 080401(2019).

    [9] T. Li et al. Experimental contextuality in classical light. Sci. Rep., 7, 44467(2017).

    [10] D. Frustaglia et al. Classical physics and the bounds of quantum correlations. Phys. Rev. Lett., 116, 250404(2016).

    [11] M. Markiewicz et al. From contextuality of a single photon to realism of an electromagnetic wave. NPJ Quantum Inf., 5, 5(2019).

    [12] S. Berg-Johansen et al. Classically entangled optical beams for high-speed kinematic sensing. Optica, 2, 864-868(2015).

    [13] D. Guzman-Silva et al. Demonstration of local teleportation using classical entanglement. Laser Photonics Rev., 10, 317-321(2016).

    [14] B. Ndagano et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys., 13, 397-402(2017).

    [15] A. Z. Goldberg et al. Extremal quantum states. AVS Quantum Sci., 2, 044701(2020).

    [16] S. M. Barnett et al. Retrodiction for quantum optical communications. Phys. Rev. A, 62, 022313(2000).

    [17] D. T. Pegg, S. M. Barnett, J. Jeffers. Quantum retrodiction in open systems. Phys. Rev. A, 66, 022106(2002).

    [18] T. Amri, J. Laurat, C. Fabre. Characterizing quantum properties of a measurement apparatus: insights from the retrodictive approach. Phys. Rev. Lett., 106, 020502(2011).

    [19] T. Theurer et al. Quantifying operations with an application to coherence. Phys. Rev. Lett., 122, 190405(2019).

    [20] V. Cimini et al. Measuring coherence of quantum measurements. Phys. Rev. Res., 1, 033020(2019).

    [21] F. Bischof, H. Kampermann, D. Bruß. Resource theory of coherence based on positive-operator-valued measures. Phys. Rev. Lett., 123, 110402(2019).

    [22] T. Guff et al. A resource theory of quantum measurements. J. Phys. A: Math. Theor., 54, 225301(2021).

    [23] H. Xu et al. Experimental quantification of coherence of a tunable quantum detector. Phys. Rev. Lett., 125, 060404(2020).

    [24] J. Lundeen et al. Tomography of quantum detectors. Nat. Phys., 5, 27-30(2009).

    [25] G. M. D’Ariano, L. Maccone, P. L. Presti. Quantum calibration of measurement instrumentation. Phys. Rev. Lett., 93, 250407(2004).

    [26] A. Luis, L. L. Sánchez-Soto. Complete characterization of arbitrary quantum measurement processes. Phys. Rev. Lett., 83, 3573-3576(1999).

    [27] J. Fiurášek. Maximum-likelihood estimation of quantum measurement. Phys. Rev. A, 64, 024102(2001).

    [28] V. d’Auria et al. Quantum decoherence of single-photon counters. Phys. Rev. Lett., 107, 050504(2011).

    [29] A. Feito et al. Measuring measurement: theory and practice. New J. Phys., 11, 093038(2009).

    [30] H. B. Coldenstrodt-Ronge et al. A proposed testbed for detector tomography. J. Mod. Opt., 56, 432-441(2009).

    [31] G. Brida et al. Quantum characterization of superconducting photon counters. New J. Phys., 14, 085001(2012).

    [32] M. K. Akhlaghi, A. H. Majedi, J. S. Lundeen. Nonlinearity in single photon detection: modeling and quantum tomography. Opt. Express, 19, 21305-21312(2011).

    [33] A. Worsley et al. Absolute efficiency estimation of photon-number-resolving detectors using twin beams. Opt. Express, 17, 4397-4412(2009).

    [34] D. Mayers, A. Yao. Quantum cryptography with imperfect apparatus. Proc. 39th Annu. Symp. Found. Comput. Sci., 503-509(1998).

    [35] E. S. Gómez et al. Device-independent certification of a nonprojective qubit measurement. Phys. Rev. Lett., 117, 260401(2016).

    [36] W.-H. Zhang et al. Experimentally robust self-testing for bipartite and tripartite entangled states. Phys. Rev. Lett., 121, 240402(2018).

    [37] A. Tavakoli et al. Self-testing quantum states and measurements in the prepare-and-measure scenario. Phys. Rev. A, 98, 062307(2018).

    [38] J. Řeháček, D. Mogilevtsev, Z. Hradil. Operational tomography: fitting of data patterns. Phys. Rev. Lett., 105, 010402(2010).

    [39] D. Mogilevtsev et al. Data pattern tomography: reconstruction with an unknown apparatus. New J. Phys., 15, 025038(2013).

    [40] L. Zhang et al. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nat. Photonics, 6, 364-368(2012).

    [41] J. Renema et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys. Rev. Lett., 112, 117604(2014).

    [42] J. S. Lundeen et al. Direct measurement of the quantum wavefunction. Nature, 474, 188-191(2011).

    [43] M. Malik et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat. Commun., 5, 3115(2014).

    [44] G. A. Howland, D. J. Lum, J. C. Howell. Compressive wavefront sensing with weak values. Opt. Express, 22, 18870-18880(2014).

    [45] M. Mirhosseini et al. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett., 113, 090402(2014).

    [46] S. H. Knarr et al. Compressive direct imaging of a billion-dimensional optical phase space. Phys. Rev. A, 98, 023854(2018).

    [47] Z. Shi et al. Scan-free direct measurement of an extremely high-dimensional photonic state. Optica, 2, 388-392(2015).

    [48] K. Ogawa et al. A framework for measuring weak values without weak interactions and its diagrammatic representation. New J. Phys., 21, 043013(2019).

    [49] K. Ogawa et al. Direct measurement of ultrafast temporal wavefunctions. Opt. Express, 29, 19403-19416(2021).

    [50] Y. Zhou et al. Direct tomography of high-dimensional density matrices for general quantum states of photons. Phys. Rev. Lett., 127, 040402(2021).

    [51] M. Yang et al. Zonal reconstruction of photonic wavefunction via momentum weak measurement. Laser Photonics Rev., 14, 1900251(2020).

    [52] J. Z. Salvail et al. Full characterization of polarization states of light via direct measurement. Nat. Photonics, 7, 316-321(2013).

    [53] C. Bamber, J. S. Lundeen. Observing Dirac’s classical phase space analog to the quantum state. Phys. Rev. Lett., 112, 070405(2014).

    [54] J. S. Lundeen, C. Bamber. Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett., 108, 070402(2012).

    [55] G. S. Thekkadath et al. Direct measurement of the density matrix of a quantum system. Phys. Rev. Lett., 117, 120401(2016).

    [56] S. Wu. State tomography via weak measurements. Sci. Rep., 3, 1193(2013).

    [57] C. Ren, Y. Wang, J. Du. Efficient direct measurement of arbitrary quantum systems via weak measurement. Phys. Rev. Appl., 12, 014045(2019).

    [58] W.-W. Pan et al. Direct measurement of a nonlocal entangled quantum state. Phys. Rev. Lett., 123, 150402(2019).

    [59] Y. Kim et al. Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun., 9, 192(2018).

    [60] L. Xu et al. Direct characterization of quantum measurements using weak values. Phys. Rev. Lett., 127, 180401(2021).

    [61] P. Zou, Z.-M. Zhang, W. Song. Direct measurement of general quantum states using strong measurement. Phys. Rev. A, 91, 052109(2015).

    [62] G. Vallone, D. Dequal. Strong measurements give a better direct measurement of the quantum wave function. Phys. Rev Lett., 116, 040502(2016).

    [63] Y.-X. Zhang, S. Wu, Z.-B. Chen. Coupling-deformed pointer observables and weak values. Phys. Rev. A, 93, 032128(2016).

    [64] X. Zhu, Y.-X. Zhang, S. Wu. Direct state reconstruction with coupling-deformed pointer observables. Phys. Rev. A, 93, 062304(2016).

    [65] T. Denkmayr et al. Experimental demonstration of direct path state characterization by strongly measuring weak values in a matter-wave interferometer. Phys. Rev. Lett, 118, 010402(2017).

    [66] L. Calderaro et al. Direct reconstruction of the quantum density matrix by strong measurements. Phys. Rev. Lett., 121, 230501(2018).

    [67] X. Zhu et al. Hybrid direct state tomography by weak value(2019).

    [68] C.-R. Zhang et al. Direct measurement of the two-dimensional spatial quantum wave function via strong measurements. Phys. Rev. A, 101, 012119(2020).

    [69] M.-C. Chen et al. Directly measuring a multiparticle quantum wave function via quantum teleportation. Phys. Rev. Lett., 127, 030402(2021).

    [70] J. A. Gross et al. Novelty, efficacy, and significance of weak measurements for quantum tomography. Phys. Rev. A, 92, 062133(2015).

    [71] E. Haapasalo, P. Lahti, J. Schultz. Weak versus approximate values in quantum state determination. Phys. Rev. A, 84, 052107(2011).

    [72] Z. Bian et al. Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk. Phys. Rev. Lett., 114, 203602(2015).

    [73] D. Brivio et al. Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A, 81, 012305(2010).

    [74] R. Horodecki et al. Quantum entanglement. Rev. Mod. Phys., 81, 865-942(2009).

    Liang Xu, Huichao Xu, Jie Xie, Hui Li, Lin Zhou, Feixiang Xu, Lijian Zhang. Direct characterization of coherence of quantum detectors by sequential measurements[J]. Advanced Photonics, 2021, 3(6): 066001
    Download Citation