• Photonics Research
  • Vol. 7, Issue 11, 1222 (2019)
Jianan Duan1, Heming Huang1, Bozhang Dong1, Justin C. Norman2, Zeyu Zhang3, John E. Bowers2、3、4, and Frédéric Grillot1、5、*
Author Affiliations
  • 1LTCI, Télécom Paris, Institut Polytechnique de Paris, 46 rue Barrault, 75013 Paris, France
  • 2Materials Department, University of California, Santa Barbara, California 93106, USA
  • 3Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
  • 4Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
  • 5Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, USA
  • show less
    DOI: 10.1364/PRJ.7.001222 Cite this Article Set citation alerts
    Jianan Duan, Heming Huang, Bozhang Dong, Justin C. Norman, Zeyu Zhang, John E. Bowers, Frédéric Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration[J]. Photonics Research, 2019, 7(11): 1222 Copy Citation Text show less
    References

    [1] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).

    [2] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [3] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, V. M. Stojanovic. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [4] K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, Y. Arakawa. Isolator free optical I/O core transmitter by using quantum dot laser. 2015 IEEE 12th International Conference on Group IV Photonics (GFP), 177-178(2015).

    [5] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics, 5, 758-762(2011).

    [6] T. L. Koch, R. Linke. Effect of nonlinear gain reduction on semiconductor laser wavelength chirping. Appl. Phys. Lett., 48, 613-615(1986).

    [7] T. L. Koch, J. E. Bowers. Nature of wavelength chirping in directly modulated semiconductor lasers. Electron. Lett., 20, 1038-1040(1984).

    [8] A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, J. Reithmaier. Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array. Appl. Phys. Lett., 110, 181103(2017).

    [9] H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, L. Lester. Nondegenerate four-wave mixing in quantum dot distributed feedback lasers. IEEE Photon. Technol. Lett., 17, 1686-1688(2005).

    [10] S. Wieczorek, B. Krauskopf, T. B. Simpson, D. Lenstra. The dynamical complexity of optically injected semiconductor lasers. Phys. Rep., 416, 1-128(2005).

    [11] C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux. Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback. Internat. J. Bifur. Chaos, 22, 1250246(2012).

    [12] D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, A. Kovsh. Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers. Electron. Lett., 39, 1819-1820(2003).

    [13] B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge. Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys., 15, 093031(2013).

    [14] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [15] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 112, 251111(2018).

    [16] C. Wang, K. Schires, M. Osiński, P. J. Poole, F. Grillot. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci. Rep., 6, 27825(2016).

    [17] M. Osinski, J. Buus. Linewidth broadening factor in semiconductor lasers: an overview. IEEE J. Quantum Electron., 23, 9-29(1987).

    [18] C. Hantschmann, P. P. Vasil’ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, I. H. White. Understanding the bandwidth limitations in monolithic 1.3  μm InAs/GaAs quantum dot lasers on silicon. J. Lightwave Technol., 37, 949-955(2019).

    [19] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).

    [20] D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers. High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett., 111, 122107(2017).

    [21] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 35, 2780-2787(2018).

    [22] A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, J. E. Bowers. Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon. Opt. Express, 25, 9535-9543(2017).

    [23] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).

    [24] F. Grillot, B. Dagens, J.-G. Provost, H. Su, L. F. Lester. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron., 44, 946-951(2008).

    [25] H. Su, L. F. Lester. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D, 38, 2112-2118(2005).

    [26] F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, L. Lester. A dual-mode quantum dot laser operating in the excited state. Appl. Phys. Lett., 99, 231110(2011).

    [27] Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, J. E. Bowers. Effects of modulation p doping in InAs quantum dot lasers on silicon. Appl. Phys. Lett., 113, 061105(2018).

    [28] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).

    CLP Journals

    [1] Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, Mariangela Gioannini. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 2020, 8(8): 1388

    [2] Bozhang Dong, Jianan Duan, Heming Huang, Justin C. Norman, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, John E. Bowers, Frédéric Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch[J]. Photonics Research, 2021, 9(8): 1550

    Jianan Duan, Heming Huang, Bozhang Dong, Justin C. Norman, Zeyu Zhang, John E. Bowers, Frédéric Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration[J]. Photonics Research, 2019, 7(11): 1222
    Download Citation