• Journal of Semiconductors
  • Vol. 40, Issue 9, 092101 (2019)
Xuefen Cai1, Peng Zhang1、2, and Su-Huai Wei1
Author Affiliations
  • 1Beijing Computational Science Research Center, Beijing 100193, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1088/1674-4926/40/9/092101 Cite this Article
    Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study[J]. Journal of Semiconductors, 2019, 40(9): 092101 Copy Citation Text show less
    References

    [1] K Chopra, S Major, D Pandya. Transparent conductors-a status review. Thin Solid Films, 102, 1(1983).

    [2] K Nomura, H Ohta, K Ueda et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300, 1269(2003).

    [3] J F Wager. Transparent electronics. Science, 300, 1245(2003).

    [4] K Nomura, H Ohta, A Takagi et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488(2004).

    [5] T Minami. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol, 20, S35(2005).

    [6] C G Granqvist. Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells, 91, 1529(2007).

    [7] K H Zhang, K Xi, M G Blamire et al. P-type transparent conducting oxides. J Phys Condens Matter, 28, 383002(2016).

    [8] R Weiher, R Ley. Optical properties of indium oxide. J Appl Phys, 37, 299(1966).

    [9] P Erhart, A Klein, R G Egdell et al. Band structure of indium oxide: Indirect versus direct band gap. Phys Rev B, 75, 153205(2007).

    [10] S Z Karazhanov, P Ravindran, P Vajeeston et al. Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys Rev B, 76, 075129(2007).

    [11] A Walsh, J L Da Silva, S H Wei et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys Rev Lett, 100, 167402(2008).

    [12] K Reimann, M Steube. Experimental determination of the electronic band structure of SnO2. Solid State Commun, 105, 649(1998).

    [13] D Fröhlich, R Kenklies, R Helbig. Band-gap assignment in SnO2 by two-photon spectroscopy. Phys Rev Lett, 41, 1750(1978).

    [14] M Nagasawa, S Shionoya. Temperature dependence of the fundamental optical absorption edge in stannic oxide. J Phys Soc Jpn, 30, 1118(1971).

    [15] A Schleife, J Varley, F Fuchs et al. Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys Rev B, 83, 035116(2011).

    [16] J Berger, L Reining, F Sottile. Efficient GW calculations for SnO2, ZnO, and rubrene: The effective-energy technique. Phys Rev B, 85, 085126(2012).

    [17] F P Sabino, L N Oliveira, i S H Wei et al. Optical and fundamental band gaps disparity in transparent conducting oxides: new findings for the In2O3 and SnO2 systems. J Phys: Condens Matter, 29, 085501(2017).

    [18] H J Snaith, C Ducati. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett, 10, 1259(2010).

    [19] Q Jiang, L Zhang, H Wang et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2, 16177(2017).

    [20] D O Scanlon, C W Dunnill, J Buckeridge et al. Band alignment of rutile and anatase TiO2. Nat Mater, 12, 798(2013).

    [21] W A Harrison. Elementary theory of heterojunctions. J Vac Sci Technol, 14, 1016(1977).

    [22] S H Wei, A Zunger. Role ofdorbitals in valence-band offsets of common-anion semiconductors. Phys Rev Lett, 59, 144(1987).

    [23] S H Wei, A Zunger. Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals. Appl Phys Lett, 72, 2011(1998).

    [24] A Walsh, J L F Da Silva, S H Wei. Multi-component transparent conducting oxides: Progress in materials modelling. J Phys: Condens Matter, 23, 334210(2011).

    [25] W Chen, A Pasquarello. Band-edge positions in GW: effects of starting point and self-consistency. Phys Rev B, 90, 165133(2014).

    [26] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1999).

    [27] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [28] G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6, 15(1996).

    [29] J Haines, J M Léger. X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides. Phys Rev B, 55, 11144(1997).

    [30] M Landmann, E Rauls, W G Schmidt. The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys: Condens Matter, 24, 195503(2012).

    [31] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [32] F Aryasetiawan, O Gunnarsson. The GW method. Rep Prog Phys, 61, 237(1998).

    [33] S H Wei, A Zunger. Valence band splittings and band offsets of AlN, GaN, and InN. Appl Phys Lett, 69, 2719(1996).

    [34] Y Kang, G Kang, H H Nahm et al. GW calculations on post-transition-metal oxides. Phys Rev B, 89(2014).

    [35] D C Reynolds, D C Look, B Jogai et al. Valence-band ordering in ZnO. Phys Rev B, 60, 2340(1999).

    [36] F P Koffyberg. Thermoreflectance spectra of CdO: Band gaps and band-population effects. Phys Rev B, 13, 4470(1976).

    [37] M Rebien, W Henrion, M Hong et al. Optical properties of gallium oxide thin films. Appl Phys Lett, 81, 250(2002).

    [38] A Trukhin, M Kink, Y Maksimov et al. Luminescence of GeO2 glass, rutile-like and α-quartz-like crystals. J Non-Cryst Solids, 352, 160(2006).

    [39] F Borgatti, J A Berger, D Céolin et al. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n-doped SnO2. Phys Rev B, 97, 155102(2018).

    Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study[J]. Journal of Semiconductors, 2019, 40(9): 092101
    Download Citation