• Photonics Research
  • Vol. 8, Issue 12, 1862 (2020)
Guohui Li1、†, Rui Gao1、†, Yue Han1, Aiping Zhai1, Yucheng Liu2, Yue Tian1, Bining Tian1, Yuying Hao1, Shengzhong Liu2、3、4、5, Yucheng Wu1、6, and Yanxia Cui1、*
Author Affiliations
  • 1College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Key Laboratory of Applied Surface and Colloid Chemistry, MOE; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
  • 3Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5e-mail: liusz@snnu.edu.cn
  • 6e-mail: wyc@tyut.edu.cn
  • show less
    DOI: 10.1364/PRJ.403030 Cite this Article Set citation alerts
    Guohui Li, Rui Gao, Yue Han, Aiping Zhai, Yucheng Liu, Yue Tian, Bining Tian, Yuying Hao, Shengzhong Liu, Yucheng Wu, Yanxia Cui. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects[J]. Photonics Research, 2020, 8(12): 1862 Copy Citation Text show less
    References

    [1] M. Ahmadi, T. Wu, B. Hu. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater., 29, 1605242(2017).

    [2] L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).

    [3] Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, Y. Yang. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10, 355-396(2015).

    [4] Y. Zhao, K. Zhu. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev., 45, 655-689(2016).

    [5] H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, J. L. Yang. Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Appl. Phys. Lett., 112, 233301(2018).

    [6] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 6, 1701166(2018).

    [7] Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, H. Zhang. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 28, 1705833(2018).

    [8] B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, H. Zhang. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express, 26, 22750-22760(2018).

    [9] W. Tian, H. P. Zhou, L. Li. Hybrid organic-inorganic perovskite photodetectors. Small, 13, 1702107(2017).

    [10] M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, Q. Zhang. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater., 27, 1701121(2017).

    [11] G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).

    [12] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319(2013).

    [13] P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, Y. J. Zhu. Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells. J. Mater. Chem. C, 4, 9003-9008(2016).

    [14] F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, M. Grätzel. Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 41, 469-475(2017).

    [15] M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, L. Wang. Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chemistry, 21, 434-439(2015).

    [16] H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X.-Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [17] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett., 13, 1764-1769(2013).

    [18] J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, C. Y. Jia. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci., 11, 2035-2045(2018).

    [19] R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, Y. Yang. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule, 3, 1464-1477(2019).

    [20] Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, J. S. Huang. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy, 3, 560-566(2018).

    [21] Y. C. Shao, Y. B. Yuan, J. S. Huang. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy, 1, 15001(2016).

    [22] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376-1379(2017).

    [23] D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, R. Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360, 1442-1446(2018).

    [24] C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, C. B. Liu. Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells. Chem. Mater., 28, 2742-2749(2016).

    [25] Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, Z. Q. He. Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci., 8, 1256-1260(2015).

    [26] H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, Z. Q. He. Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. Phys. Chem. Chem. Phys., 17, 9613-9618(2015).

    [27] C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, M. T. Wang. Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy, 12, 59-68(2015).

    [28] X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, X. W. Sun. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy, 37, 40-45(2017).

    [29] K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, Z. H. Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245-248(2018).

    [30] M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, E. H. Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 11, 872-877(2016).

    [31] A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, D. Mandal. Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application. Nano Energy, 49, 380-392(2018).

    [32] G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, S. Z. Liu. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater., 29, 1805553(2019).

    [33] Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, M. Xiao. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc., 138, 3761-3768(2016).

    [34] G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, Z. H. Chen. Laser molecular beam epitaxy and characterization of perovskite oxide thin films. J. Cryst. Growth, 227-228, 929-935(2001).

    [35] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 9, 12759-12765(2017).

    [36] J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, Q. L. Bao. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 10, 3536-3542(2016).

    [37] C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, A. J. Heeger. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale, 7, 16460-16469(2015).

    [38] J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, Y. X. Cui. Single-crystalline lead halide perovskite wafers for high performance photodetectors. J. Mater. Chem. C, 7, 8357-8363(2019).

    [39] W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, O. M. Bakr. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater., 28, 3383-3390(2016).

    [40] Y. H. Deng, Z. Q. Yang, R. M. Ma. Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Converg., 7, 25(2020).

    [41] Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, J. S. Huang. Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells. Adv. Funct. Mater., 29, 1807707(2019).

    [42] R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, S. D. Stranks. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 1, 155-167(2017).

    [43] B. R. Sutherland. Tailoring perovskite thin films to rival single crystals. Joule, 1, 23-25(2017).

    [44] H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, C. Y. Su. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater., 29, 1602639(2017).

    [45] Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, Q. Yan. A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films. J. Mater. Chem. C, 6, 4464-4470(2018).

    [46] Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, S. Z. F. Liu. 120 mm single-crystalline perovskite and wafers: towards viable applications. Sci. China Chem., 60, 1367-1376(2017).

    [47] J. R. Zhang, G. Hodes, Z. W. Jin, S. Z. Liu. All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew. Chem. Int. Ed., 58, 15596-15618(2019).

    [48] L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, Q. M. Wang. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans., 46, 1766-1769(2017).

    [49] X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, H. Song. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation. Nanoscale, 10, 10505-10513(2018).

    [50] Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, T. Y. Zhai. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv. Funct. Mater., 27, 1703115(2017).

    [51] R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, Y. L. Song. High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part. Part. Syst. Charact., 35, 201700304(2018).

    [52] J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, Q. Chen. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett., 18, 7628-7634(2018).

    [53] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, A. Walsh. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett., 14, 2584-2590(2014).

    [54] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [55] Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, J. S. Huang. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

    [56] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519-522(2015).

    [57] Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, J. L. Sun. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci. Rep., 5, 16563(2015).

    [58] Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, S. Z. F. Liu. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater., 27, 5176-5183(2015).

    [59] W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, S. Y. Jin. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc., 137, 12458-12461(2015).

    [60] R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, D. Yu. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett., 16, 7710-7717(2016).

    [61] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804-6834(2016).

    [62] M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, J. B. Li. Flexible photodetectors based on phase dependent PbI2 single crystals. J. Mater. Chem. C, 4, 6492-6499(2016).

    [63] P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, J. Zhu. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett., 16, 871-876(2016).

    [64] W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, J. S. Jie. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett., 17, 2482-2489(2017).

    [65] L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, Z. Liu. Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal. Adv. Funct. Mater., 26, 5263-5270(2016).

    [66] J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, H. B. Zeng. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater., 28, 4861-4869(2016).

    [67] W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, J. S. Jie. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater., 28, 2201-2208(2016).

    [68] H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, H. S. Song. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett., 15, 7963-7969(2015).

    [69] E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, L. S. Forro. Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization. Nano Lett., 14, 6761-6766(2014).

    [70] H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, H. S. Song. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7, 4163-4170(2015).

    [71] D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, H. S. Song. Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale, 9, 1567-1574(2017).

    [72] Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, J. L. Yang. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 8, 5350-5357(2016).

    [73] L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, J. Tang. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity. Nano Lett., 16, 7446-7454(2016).

    [74] X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, W. P. Hu. Perovskite photodetectors based on CH3NH3PbI3 single crystals. Chem. Asian J., 11, 2675-2679(2016).

    [75] S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, B. Zhang. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. Int. Ed., 54, 5693-5696(2015).

    [76] X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, X. H. Zhang. Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability. ACS Appl. Mater. Interfaces, 10, 10287-10295(2018).

    [77] I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, R. Nechachea. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 51, 324-332(2018).

    [78] J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, X. Zhang. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 1, 404-410(2018).

    [79] I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, S. G. Cloutier. Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 15, 1804150(2018).

    [80] H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, Y. F. Yan. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 53, 880-886(2018).

    [81] M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, C. A. Mirkin. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc., 138, 10096-10099(2016).

    [82] Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, S. Jin. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc., 137, 5810-5818(2015).

    [83] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, Q. Xiong. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett., 14, 5995-6001(2014).

    [84] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater., 27, 3405-3410(2015).

    [85] J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, Q. H. Xiong. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett., 15, 4571-4577(2015).

    [86] X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, T. C. Sum. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci., 3, 1600137(2016).

    [87] R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, Y. X. Cui. Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors. Org. Electron., 83, 105744(2020).

    [88] J. He, W.-H. Fang, R. Long, O. V. Prezhdo. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis. J. Am. Chem. Soc., 141, 5798-5807(2019).

    [89] W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, Y. X. Cui. Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature. Physica E, 97, 130-135(2018).

    [90] J. A. Geurst. Theory of space-charge-limited currents in thin semiconductor layers. Phys. Status Solidi B, 15, 107-118(1966).

    [91] O. Marinov, M. J. Deen, R. Datars. Compact modeling of charge carrier mobility in organic thin-film transistors. Jpn. J. Appl. Phys., 106, 064501(2009).

    [92] Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, T. Kim. Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications. ACS Nano, 12, 8406-8414(2018).

    [93] D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, Z. Y. Fan. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett., 19, 2850-2857(2019).

    [94] G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, L. Jiang. Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater., 29, 1808741(2019).

    [95] F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 7, 798-802(2012).

    [96] O. Katz, G. Bahir, J. Salzman. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett., 84, 4092-4094(2004).

    [97] G. Konstantatos, J. Clifford, L. Levina, E. H. Sargent. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photonics, 1, 531-534(2007).

    [98] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang. ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 7, 1003-1009(2007).

    [99] Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, R. Ma. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater., 30, 1704333(2018).

    [100] Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, S. Z. F. Liu. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun., 9, 5302(2018).

    [101] W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, J. Tang. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics, 11, 726-732(2017).

    [102] Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, J. S. Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics, 9, 679-686(2015).

    CLP Journals

    [1] Qingyun He, Enrou Mei, Ze Wang, Xiaojuan Liang, Suqin Chen, Weidong Xiang. Ultrastable Gd3+ doped CsPbCl1.5Br1.5 nanocrystals blue glass for regulated and low thresholds amplified spontaneous emission[J]. Photonics Research, 2021, 9(10): 1916

    Guohui Li, Rui Gao, Yue Han, Aiping Zhai, Yucheng Liu, Yue Tian, Bining Tian, Yuying Hao, Shengzhong Liu, Yucheng Wu, Yanxia Cui. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects[J]. Photonics Research, 2020, 8(12): 1862
    Download Citation