• Acta Optica Sinica
  • Vol. 41, Issue 1, 0130002 (2021)
Wei Jin1、2、*, Haihong Bao1、2、**, Yun Qi1、2, Yan Zhao1、2, Pengcheng Zhao1, Shoufei Gao1, and Hoi Lut Ho1、2
Author Affiliations
  • 1Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • 2Photonics Research Center, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
  • show less
    DOI: 10.3788/AOS202141.0130002 Cite this Article Set citation alerts
    Wei Jin, Haihong Bao, Yun Qi, Yan Zhao, Pengcheng Zhao, Shoufei Gao, Hoi Lut Ho. Micro/nano-Structured Optical Fiber Laser Spectroscopy[J]. Acta Optica Sinica, 2021, 41(1): 0130002 Copy Citation Text show less
    References

    [1] Lu T X, Lu Y Q[M]. Principle and application of laser spectroscopy(2009).

    [2] Demtröder W. Laser spectroscopy[M]. Berlin: Springer Science & Business Media(2008).

    [3] Russell P S J. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 24, 4729-4749(2006).

    [4] Birks T A, Atkin D M, Shepherd T J et al. Full 2-D photonic bandgaps in silica/air structures[J]. Electronics Letters, 31, 1941-1943(1995).

    [5] Digonnet M J F, Kim H K, Kino G S et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[J]. Journal of Lightwave Technology, 23, 4169-4177(2005).

    [6] Roberts P, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).

    [7] Wei C L, Joseph Weiblen R, Menyuk C R et al. Negative curvature fibers[J]. Advances in Optics and Photonics, 9, 504-561(2017).

    [8] Snyder A W, Love J D. Optical waveguide theory[M]. New York: Chapman and Hall, 66(1983).

    [9] Hecht E. Optics[M]. 4th Ed. Mass: Addison Wesley(2002).

    [10] Benabid F, Roberts P J. Linear and nonlinear optical properties of hollow core photonic crystal fiber[J]. Journal of Modern Optics, 58, 87-124(2011). http://dx.doi.org/10.1080/09500340.2010.543706

    [11] Uebel P, Günendi M C, Frosz M H et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes[J]. Optics Letters, 41, 1961-1964(2016).

    [12] Ding W, Wang Y Y, Gao S F et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-12(2020). http://www.researchgate.net/publication/337727030_Recent_Progress_in_Low-Loss_Hollow-Core_Anti-Resonant_Fibers_and_Their_Applications

    [13] Osório J H, Chafer M, Debord B et al. Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification[J]. Scientific Reports, 9, 1376(2019). http://www.researchgate.net/publication/330848751_Tailoring_modal_properties_of_inhibited-coupling_guiding_fibers_by_cladding_modification

    [14] Tong L M, Sumetsky M. Optical waveguiding properties of MNFs: theory and numerical simulations[M]. ∥Tong L M, Sumetsky M. Subwavelength and nanometer diameter optical fibers. Advanced topics in science and technology in China. Heidelberg: Springer, 15-72(2010).

    [15] Jin W, Xuan H, Wang C et al. Robust microfiber photonic microcells for sensor and device applications[J]. Optics Express, 22, 28132-28141(2014).

    [16] Monro T M, Warren-Smith S, Schartner E P et al. Sensing with suspended-core optical fibers[J]. Optical Fiber Technology, 16, 343-356(2010). http://www.sciencedirect.com/science/article/pii/S1068520010000878

    [17] Wang C, Jin W, Ma J et al. Suspended core photonic microcells for sensing and device applications[J]. Optics Letters, 38, 1881-1883(2013). http://europepmc.org/abstract/med/23722776

    [18] Russell P S J, Hölzer P, Chang W et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nature Photonics, 8, 278-286(2014). http://www.nature.com/articles/nphoton.2013.312

    [19] Tan Y Z, Jin W, Yang F et al. Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection[J]. Journal of Lightwave Technology, 35, 2887-2893(2017). http://ieeexplore.ieee.org/document/7931550/

    [20] Benabid F, Couny F, Knight J C et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 434, 488-491(2005). http://europepmc.org/abstract/MED/15791251

    [21] Xiao L M, Demokan M S, Jin W et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 25, 3563-3574(2007).

    [22] Yang F, Jin W, Lin Y C et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 35, 3413-3424(2017).

    [23] Xuan H F, Jin W, Ju J et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[J]. Proceedings of SPIE, 6619, 661936(2007).

    [24] Xiao L, Jin W, Demokan M et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Optics Express, 13, 9014-9022(2005).

    [25] Fini J M. Microstructure fibres for optical sensing in gases and liquids[J]. Measurement Science and Technology, 15, 1120-1128(2004).

    [26] Kubota H, Kawanishi S, Notomi M. Simple analysis of water-filled hollow-core silica photonic bandgap fiber[J]. IEICE Electronics Express, 6, 870-875(2009). http://ci.nii.ac.jp/naid/130000121155

    [27] Jin W, Xuan H F, Ho H L. Sensing with hollow-core photonic bandgap fibers[J]. Measurement Science and Technology, 21, 094014(2010). http://adsabs.harvard.edu/abs/2010MeScT..21i4014J

    [28] Liu X L, Ding W, Wang Y Y et al. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing[J]. Optics Letters, 42, 863-866(2017). http://www.ncbi.nlm.nih.gov/pubmed/28198884

    [29] Nissen M, Doherty B, Hamperl J et al. UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection[J]. Sensors (Basel, Switzerland), 18, E478(2018).

    [30] Stewart G, Culshaw B. Optical waveguide modelling and design for evanescent field chemical sensors[J]. Optical and Quantum Electronics, 26, S249-S259(1994). http://link.springer.com/article/10.1007/BF00384677

    [31] Yang F, Jin W, Cao Y et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Optics Express, 22, 24894-24907(2014).

    [32] Fini J M, Nicholson J W, Mangan B et al. Polarization maintaining single-mode low-loss hollow-core fibres[J]. Nature Communications, 5, 5085(2014). http://www.nature.com/articles/ncomms6085

    [33] Hoo Y L, Jin W, Ho H L et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 105, 183-186(2005). http://www.sciencedirect.com/science/article/pii/S0925400504004228

    [34] Kornaszewski L W, Gayraud N, Stone J M et al. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator[J]. Optics Express, 15, 11219-11224(2007).

    [35] Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber[J]. Optics Express, 16, 3976-3985(2008).

    [36] Bialkowski S E. Photothermal spectroscopy methods for chemical analysis[M]. New Jersey: John Wiley & Sons(1996).

    [37] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4403440/

    [38] Lin Y, Jin W, Yang F et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[J]. Scientific Reports, 6, 39410(2016). http://www.nature.com/articles/srep39410#Fig6

    [39] Lin Y C, Jin W, Yang F et al. Performance optimization of hollow-core fiber photothermal gas sensors[J]. Optics Letters, 42, 4712-4715(2017).

    [40] Bao H, Hong Y, Jin W et al. Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers[J]. Optics Express, 28, 5423-5435(2020). http://www.researchgate.net/publication/338717779_modeling_and_performance_evaluation_of_in-line_fabry-perot_photothermal_gas_sensors_with_hollow-core_optical_fibers

    [41] Yang F, Tan Y, Jin W et al. Hollow-core fiber Fabry-Perot photothermal gas sensor[J]. Optics Letters, 41, 3025-3028(2016).

    [42] Zhao P C, Zhao Y, Bao H H et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber[J]. Nature Communications, 11, 847(2020). http://www.nature.com/articles/s41467-020-14707-0?utm_source=other&utm_medium=other&utm_content=null

    [43] Buric M P, Chen K P, Falk J et al. Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber[J]. Applied Optics, 47, 4255-4261(2008). http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-23-4255

    [44] Doménech J L, Cueto M. Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers[J]. Optics Letters, 38, 4074-4077(2013).

    [45] Westergaard P G, Lassen M, Petersen J C. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber[J]. Optics Express, 23, 16320-16328(2015).

    [46] Hanf S, Bögözi T, Keiner R et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath[J]. Analytical Chemistry, 87, 982-988(2015). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=101099099&site=ehost-live

    [47] Khurgin J B, Tucker R S. Slow light: science and applications[M]. Florida: CRC press(2018).

    [48] Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber[J]. Proceedings of SPIE, 1032, 103233C(2017). http://ieeexplore.ieee.org/document/7960921/

    [49] Bao H H, Jin W, Miao Y P et al. Laser-induced dispersion with stimulated Raman scattering in gas-filled optical fiber[J]. Journal of Lightwave Technology, 37, 2120-2125(2019).

    [50] Tai H, Tanaka H, Yoshino T. Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-microm line of a He-Ne laser[J]. Optics Letters, 12, 437-439(1987).

    [51] Qi Y, Yang F, Lin Y C et al. Nanowaveguide enhanced photothermal interferometry spectroscopy[J]. Journal of Lightwave Technology, 35, 5267-5275(2017). http://ieeexplore.ieee.org/document/8106787/

    [52] Cao Y C, Jin W, Ho L H et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Optics Letters, 37, 214-216(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ol-37-2-214

    [53] Li Z, Wang Z, Qi Y et al. Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper[J]. Sensors and Actuators B: Chemical, 248, 1023-1028(2017).

    [54] Qi Y, Zhao Y, Bao H H et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range[J]. Optica, 6, 570(2019). http://www.researchgate.net/publication/332764816_Nanofiber_enhanced_stimulated_Raman_spectroscopy_for_ultra-fast_ultra-sensitive_hydrogen_detection_with_ultra-wide_dynamic_range

    [55] Jensen J B, Pedersen L H, Hoiby P E et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions[J]. Optics Letters, 29, 1974-1976(2004).

    [56] Sun J, Chan C C, Zhang Y F et al. Analysis of hollow-core photonic bandgap fibers for evanescent wave biosensing[J]. Journal of Biomedical Optics, 13, 054048(2008). http://europepmc.org/abstract/MED/19021428

    [57] Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers[J]. Optics Express, 15, 12783-12791(2007).

    [58] Afshar V S. Warren-Smith S C, Monro T M. Enhancement of fluorescence-based sensing using microstructured optical fibres[J]. Optics Express, 15, 17891-17901(2007).

    [59] Vienne G, Shan L Y, Lebrun S et al. Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers[J]. Applied Physics Letters, 102, 201110(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6519198

    [60] Khaing Oo M K, Han Y, Kanka J et al. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy[J]. Optics Letters, 35, 466-468(2010).

    [61] Yiou S, Delaye P, Rouvie A et al. Stimulated Raman scattering in an ethanol core microstructured optical fiber[J]. Optics Express, 13, 4786-4791(2005).

    [62] Han Y. Khaing Oo M K, Zhu Y, et al. Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering[J]. Optical Engineering, 47, 040502(2008).

    [63] Yang X, Shi C, Wheeler D et al. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 27, 977-984(2010). http://www.ncbi.nlm.nih.gov/pubmed/20448763

    [64] Unterkofler S. McQuitty R J, Euser T G, et al. Microfluidic integration of photonic crystal fibers for online photochemical reaction analysis[J]. Optics Letters, 37, 1952-1954(2012).

    Wei Jin, Haihong Bao, Yun Qi, Yan Zhao, Pengcheng Zhao, Shoufei Gao, Hoi Lut Ho. Micro/nano-Structured Optical Fiber Laser Spectroscopy[J]. Acta Optica Sinica, 2021, 41(1): 0130002
    Download Citation