• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922020 (2022)
Rui Jiang1、2、*
Author Affiliations
  • 1Optoelectronic Technology R&D Department, Beijing Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
  • 2Beijing RSLaser Opto-Electronics Technology Co., Ltd, Beijing 100176, China
  • show less
    DOI: 10.3788/LOP202259.0922020 Cite this Article Set citation alerts
    Rui Jiang. Key Technologies and Applications of Excimer Laser as Light Sources in Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922020 Copy Citation Text show less
    References

    [1] Basting D, Marowsky G[M]. Excimer Laser Technology(2005).

    [2] Basov N G, Danilychev V A, Popov Y M. Stimulated emission in the vacuum ultraviolet region[J]. Soviet Journal of Quantum Electronics, 1, 18-22(1971).

    [3] Golde M F, Thrush B A. Vacuum UV emission from reactions of metastable inert gas atoms: Chemiluminescence of ArO and ArCl[J]. Chemical Physics Letters, 29, 486-490(1974).

    [4] Burnham R, Harris N W, Djeu N. Xenon fluoride laser excitation by transverse electric discharge[J]. Applied Physics Letters, 28, 86-87(1976).

    [5] Hoffman J M, Hays A K, Tisone G C. High power UV noble-gas-halide laserf[J]. Applied Physics Letters, 28, 538-539(1976).

    [6] Jain K, Willson C G, Lin B J. Ultrafast deep UV lithography with excimer lasers[J]. IEEE Electron Device Letters, 3, 53-55(1982).

    [7] Rothschild M. Projection optical lithography[J]. Materials Today, 8, 18-24(2005).

    [8] Moore G E. Lithography and the future of Moore’s law[J]. Proceedings of SPIE, 2439, 2-17(1995).

    [9] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 406, 1027-1031(2000).

    [10] Borisov V M, El’tsov A V, Khristoforov O B. High-power, highly stable KrF laser with a pulse repetition rate[J]. Quantum Electronics, 45, 691(2015).

    [11] Sengupta U K. Krypton fluoride excimer laser for advanced microlithography[J]. Optical Engineering, 32, 2410-2420(1993).

    [12] Ness R, Melcher P, Ferguson G et al. A decade of solid state pulsed power development at Cymer Inc[C], 228-233(2004).

    [13] Fleurov V B, Colon D J, Brown D J W et al. Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography[J]. Proceedings of SPIE, 5040, 1694-1703(2003).

    [14] Brown D J W, O’Keeffe P, Fleurov V B et al. XLR 500i: recirculating ring ArF light source for immersion lithography[J]. Proceedings of SPIE, 6520, 652020(2007).

    [15] Igarashi M, Miyamoto H, Katou M et al. Imaging performance enhancement by improvements of spectral performance stability and controllability on the cutting-edge[J]. Proceedings of SPIE, 11327, 1132717(2020).

    [16] Cybulski R F, Ershov A I, Onkels E D et al. High power gas discharge laser with line narrowing unit[P].

    [17] Sandstrom R L, Besaucele H A, Fomenkov I V et al. Pulse energy control for excimer laser[P].

    [18] Kleinschmidt J. Narrow band excimer or molecular fluorine laser with improved parameters[P].

    [19] Spangler R L,, Jacques R N, Brown D et al. Wavelength stabilization in an excimer laser source using piezoelectric active vibration control[J]. Proceedings of SPIE, 4346, 1190-1201(2001).

    [20] Tanaka S, Tsushima H, Nakaike T et al. GT40A: durable 45-W ArF injection-lock laser light source for dry/immersion lithography[J]. Proceedings of SPIE, 6154, 61542O(2006).

    [21] Dunstan W J, Jacques R, Rafac R J et al. Active spectral control of DUV light sources for OPE minimization[J]. Proceedings of SPIE, 6154, 61542J(2006).

    [22] Riggs D J, Haugan O. Advanced laser wavelength control[P].

    [23] Will C, Hoang D, David D et al. Improvements in bandwidth and wavelength control for XLR 660xi systems[J]. Proceedings of SPIE, 9052, 90521H(2014).

    [24] Suzuki T, Kubo H, Suganuma T et al. High-resolution multigrating spectrometer for high-quality deep-UV light source production[J]. Proceedings of SPIE, 4346, 1254-1261(2001).

    [25] Fallon J P, Sandstrom R L, Partlo W N et al. Control system for a two chamber gas discharge laser[P].

    [26] Feng Z B, Zhou Y, Jiang R et al. Recognition of energy model of excimer laser by gate recurrent unit[J]. Chinese Journal of Lasers, 48, 0901004(2021).

    [27] Terashima K, Wakabayashi O, Sumitani A. Ultraviolet laser apparatus and gas for ultraviolet laser[P].

    [28] Matsunaga T, Enami T, Kakizaki K et al. Extremely high-NA high-throughput-scanner-compatible 4-kHz KrF excimer laser for DUV lithography[J]. Proceedings of SPIE, 4346, 1617-1626(2001).

    [29] Partlo W N, Amada Y, Carmichael J A et al. Gas discharge laser chamber improvements[P].

    [30] Imada G, Masuda W, Yatsui K. Characteristics of excitation discharge of an excimer laser in gas density depletion[J]. Proceedings of SPIE, 3574, 653-658(1998).

    [31] Albrecht H S, Vogler K W, Schroeder T. Laser gas replenishment method[P].

    [32] Hori T, Yabu T, Ishihara T et al. Feasibility study of 6 kHz ArF excimer laser for 193 nm immersion lithography[J]. Proceedings of SPIE, 5754, 1285-1292(2005).

    [33] Liu B, Ding J B, Zhou Y et al. Simulation of discharge shock waves in excimer laser[J]. Chinese Journal of Lasers, 47, 0901001(2020).

    [34] Elliott D L[M]. Ultraviolet laser technology and applications(2014).

    [35] Jursich G M, von Drasek W A, Brimacombe R K et al. Gas contaminant effects in discharge-excited KrF lasers[J]. Applied Optics, 31, 1975-1981(1992).

    [36] Sumitani A, Andou S, Watanabe T et al. Output stabilization technology with chemical impurity control on ArF excimer laser[J]. Proceedings of SPIE, 4000, 1424-1434(2000).

    [37] Gong M X, Watson T A, Das P P et al. Fluorine control system with fluorine monitor[P].

    [38] Rule J A, Morton R C, Fleurov V V et al. Automatic gas control system for a gas discharge laser[P].

    [39] Dunstan W J, O’Brien K M, Jacques R N et al. Laser gas injection system[P].

    [40] O’Brien K, Dunstan W J, Riggs D et al. Performance demonstration of significant availability improvement in lithography light sources using GLX control system[J]. Proceedings of SPIE, 6924, 69242Q(2008).

    [41] Bauer M, Bischoff M, Jukresch S et al. Exterior surface damage of calcium fluoride outcoupling mirrors for DUV lasers[J]. Optics Express, 17, 8253-8263(2009).

    [42] Tei D, Hattori M, Kumazaki T et al. Laser-induced damage and defect analysis of calcium fluoride window caused by the high pulse repetition rate of ArF excimer laser radiation[J]. Proceedings of SPIE, 10805, 108050H(2018).

    [43] Wang J, Cox G P. ArF laser-induced damage of calcium fluoride windows with protected anti-reflection coatings[J]. Optical Engineering, 60, 031007(2020).

    [44] Komine N, Sakuma S, Shiozawa M et al. Influence of sodium impurities on ArF excimer-laser-induced absorption in CaF2 crystals[J]. Applied Optics, 39, 3925-3930(2000).

    [45] Huang C, Saethre R, Melcher P et al. Low jitter and drift high voltage IGBT gate driver[C], 127-130(2003).

    [46] Kakizaki K, Sasaki Y, Inoue T et al. High-repetition-rate (6 kHz) and long-pulse-duration (50 ns) ArF excimer laser for sub-65 nm lithography[J]. Review of Scientific Instruments, 77, 035109(2006).

    [47] Wakabayashi O, Ariga T, Kumazaki T et al. Beam quality of a new-type MOPO laser system for VUV laser lithography[J]. Proceedings of SPIE, 5377, 1772-1780(2004).

    [48] Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser & Photonics Reviews, 6, 607-621(2012).

    [49] Siegman A E, Sasnett M W, Johnston T F. Choice of clip levels for beam width measurements using knife-edge techniques[J]. IEEE Journal of Quantum Electronics, 27, 1098-1104(1991).

    [50] Liu Y, Caffey J, Artioukov I et al. Focus ability of a capillary discharge-pumped soft X-ray laser beam[J]. Proceedings of SPIE Vol. 4505, Soft X-Ray Lasers and Applications IV, (12 December, 2001).

    [51] Yang X D, Shao J X, Liao S H et al. Investigation on measuring beam width of the Gaussian beam by knife-edge method[J]. Laser & Infrared, 39, 829-832(2009).

    [52] Mann K, Bayer A, Lübbecke M et al. Comprehensive laser beam characterization for applications in material processing[J]. Proceedings of SPIE, 7202, 116-126(2009).

    [53] Lin B J. Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost[J]. Microelectronic Engineering, 143, 91-101(2015).

    [54] Yashiro M, Oouchi T, Tsushima H et al. Excimer laser gas usage reduction technology for semiconductor manufacturing[J]. Proceedings of SPIE, 10147, 482-487(2017).

    [55] Miyamoto H, Kumazaki T, Tsushima H et al. The next-generation ArF excimer laser for multiple-patterning immersion lithography with helium free operation[J]. Proceedings of SPIE, 9780, 198-203(2016).

    [56] Dinesh K, Yzzer R, Ted C et al. Neon reduction program on cymer arf light sources[J]. Proceedings of SPIE, 9780, 97801H(2016).

    [57] Gross E, Padmabandu G G, Ujazdowski R et al. Enabling CoO improvement thru green initiatives[J]. Proceedings of SPIE, 9426, 942626(2015).

    [58] Roman Y, Cacouris T, Kanawade D et al. DUV light source sustainability achievements and next steps[J]. Proceedings of SPIE, 10587, 1058716(2018).

    [59] Finders J, Dusa M, Mulkens J et al. Solutions for 22-nm node patterning using ArFi technology[J]. Proceedings of SPIE, 7973, 79730U(2011).

    [60] Conley W, Alagna P, Shieh J et al. The impact of lower light source bandwidth on sub-10 nm process node features[J]. Proceedings of SPIE, 10147, 42-54(2017).

    [61] Alagna P, Rechtsteiner G, Timoshkov V et al. Lower BW and its impact on the patterning performance[J]. Proceedings of SPIE, 9780, 978008(2016).

    [62] Oga T, Matsumoto S, Yamazaki T et al. ArF lightsource “GT66A” for next-generation immersion lithography enhancing EPE and CD performance[J]. Proceedings of SPIE, 11613, 116130T(2021).

    [63] Pflanz T, Huber H. Compact excimer laser light source for optical (mask) inspection systems[J]. Proceedings of SPIE, 4349, 180-184(2001).

    [64] Solarz R W. Coherent DUV illumination for semiconductor wafer inspection[P].

    [65] Esser H G, Schillinger H. High repetition rate excimer laser[J]. Proceedings of SPIE, 6106, 61061I(2006).

    Rui Jiang. Key Technologies and Applications of Excimer Laser as Light Sources in Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922020
    Download Citation