• Journal of Semiconductors
  • Vol. 41, Issue 5, 052206 (2020)
Le Huang1, Nengjie Huo2, Zhaoqiang Zheng1, Huafeng Dong3, and Jingbo Li1、2、4
Author Affiliations
  • 1School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • 2Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China
  • 3School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 4State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/41/5/052206 Cite this Article
    Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2[J]. Journal of Semiconductors, 2020, 41(5): 052206 Copy Citation Text show less
    References

    [1] W Zhang, G E Eperon, H J Snaith. Metal halide perovskites for energy applications. Nat Energy, 1, 16048(2016).

    [2] C C Stoumpos, M G Kanatzidis. Halide perovskites: poor man's high-performance semiconductors. Adv Mater, 28, 5778(2016).

    [3] Q Lin, A Armin, P L Burn et al. Organohalide perovskites for solar energy conversion. Acc Chem Res, 49, 545(2016).

    [4] Y Zhao, K Zhu. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 45, 655(2016).

    [5] J Chen, S Zhou, S Jin et al. Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C, 4, 11(2016).

    [6] J Berry, T Buonassisi, D A Egger et al. Hybrid organic–inorganic perovskites (HOIPs): Opportunities and challenges. Adv Mater, 27, 5102(2015).

    [7] M M Lee, J Teuscher, T Miyasaka et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643(2012).

    [8] S D Stranks, G E Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341(2013).

    [9] D Liu, T L Kelly. The emergence of perovskite solar cells. Nat Photonics, 8, 133(2014).

    [10] D M Jang, K Park, D H Kim et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett, 15, 5191(2015).

    [11] R Dong, Y Fang, J Chae et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 27, 1912(2015).

    [12] S A Veldhuis, P P Boix, N Yantara et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 28, 6804(2016).

    [13] M Liu, M B Johnston, H J Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395(2013).

    [14] H Zhou, Q Chen, G Li et al. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542(2014).

    [15] A Mei, X Li, L Liu et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295(2014).

    [16] C Zuo, H J Bolink, H Han et al. Advances in perovskite solar cells. Adv Sci, 3, 1500324(2016).

    [17] Q Lin, A Armin, P L Burn et al. Filterless narrowband visible photodetectors. Nat Photonics, 9, 687(2015).

    [18] Y Fang, Q Dong, Y Shao et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photonics, 9, 679(2015).

    [19] S Chen, C Teng, M Zhang et al. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv Mater, 28, 5969(2016).

    [20] H L Zhu, J Cheng, D Zhang et al. Room-temperature solution-processed niox: PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano, 10, 6808(2016).

    [21] Z K Tan, R S Moghaddam, M L Lai et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 9, 687(2014).

    [22] H Cho, S H Jeong, M H Park et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350, 1222(2015).

    [23] S D Stranks, H J Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 10, 391(2015).

    [24] J Yang, B D Siempelkamp, D Liu et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 9, 1955(2015).

    [25] B Hailegnaw, S Kirmayer, E Edri et al. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J Phys Chem Lett, 6, 1543(2015).

    [26] Y Y Zhang, S Chen, P Xu et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chin Phys Lett, 35, 036104(2018).

    [27] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [28] C Lee, X Wei, J W Kysar et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385(2008).

    [29] F Bonaccorso, Z Sun, T Hasan et al. Graphene photonics and optoelectronics. Nat Photonics, 4, 611(2010).

    [30] Y Sun, Q Wu, G Shi. Graphene based new energy materials. Energy Environ Sci, 4, 1113(2011).

    [31] Y Li, L Xu, H Liu et al. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev, 43, 2572(2014).

    [32] F Bonaccorso, L Colombo, G Yu et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347, 1246501(2015).

    [33] X Song, X Liu, D Yu et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 10, 2801(2018).

    [34] Y Lee, J Kwon, E Hwang et al. High-performance perovskite-graphene hybrid photodetector. Adv Mater, 27, 41(2015).

    [35] Y Wang, R Fullon, M Acerce et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater, 29, 1603995(2017).

    [36] D H Kang, S R Pae, J Shim et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 28, 7799(2016).

    [37] C Ma, Y Shi, W Hu et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 28, 3683(2016).

    [38] P Schulz, E Edri, S Kirmayer et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 7, 1377(2014).

    [39] D Kabra, L P Lu, M H Song et al. Efficient single-layer polymer light-emitting diodes. Adv Mater, 22, 3194(2010).

    [40] A Kormányos, V Zólyomi, N D Drummond et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X, 4, 011034(2014).

    [41] W J Yin, J H Yang, J Kang et al. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A, 3, 8926(2015).

    [42] P E Blöchl. Projector augmented-wave method. Phys Rev B, 50, 17953(1994).

    [43] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1991).

    [44] G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6, 15(1996).

    [45] J P Perdew, Y Wang. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 33, 8800(1986).

    [46] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [47] J Heyd, J E Peralta, G E Scuseria et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys, 123, 174101(2005).

    [48] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 124, 9906(2006).

    [49] S Grimme, J Antony, S Ehrlich et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 132, 154104(2010).

    [50] L Huang, N Huo, Y Li et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure. J Phys Chem Lett, 6, 2483(2015).

    [51] L Huang, L Tao, K Gong et al. Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Phys Rev B, 96, 205303(2017).

    [52] L Huang, M Zhong, H X Deng et al. The Coulomb interaction in van der Waals heterostructures. Sci China: Phys Mech Astron, 62, 37311(2019).

    [53] S H Wei, A Zunger. Band offsets and optical bowings of chalcopyrites and Zn-based II–VI alloys. J Appl Phy, 78, 3846(1995).

    [54] K T Butler, J M Frost, A Walsh. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater Horizons, 2, 228(2015).

    [55] Z Y Zhu, Y C Cheng, U Schwingenschlögl. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B, 84, 153402(2011).

    Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2[J]. Journal of Semiconductors, 2020, 41(5): 052206
    Download Citation