• Journal of Semiconductors
  • Vol. 43, Issue 8, 081301 (2022)
Shanshan Chen1, Yongyue Zhang1, Xiaorong Hong2, and Jiafang Li2、3、*
Author Affiliations
  • 1Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
  • 2Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 3Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
  • show less
    DOI: 10.1088/1674-4926/43/8/081301 Cite this Article
    Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301 Copy Citation Text show less
    (a) Schematic diagram of the dual-shutter VOA[21]. (b, c) Fabricated dual-shutter VOA device and a close-up image of the shutter part[21].
    Fig. 1. (a) Schematic diagram of the dual-shutter VOA[21]. (b, c) Fabricated dual-shutter VOA device and a close-up image of the shutter part[21].
    (Color online) (a) Schematic of two pixels of a DMD chip[19]. (b) An electromagnetically actuated micromirror[39]. (c) An electromagnetically driven 2D MOEMS mirror[37]. (d) A wire bonded 1 × 20 MEMS mirror array[40]. (e) An electrothermal bimorph-actuated MOEMS mirror[41]. (f) A 3D curved micromirror for collimating the output beam of single-mode fibers[42]. (g) Cross section and top view of an electromechanically driven adaptive astigmatic membrane mirror[43]. (h) A micro-deformable mirror architecture[44].
    Fig. 2. (Color online) (a) Schematic of two pixels of a DMD chip[19]. (b) An electromagnetically actuated micromirror[39]. (c) An electromagnetically driven 2D MOEMS mirror[37]. (d) A wire bonded 1 × 20 MEMS mirror array[40]. (e) An electrothermal bimorph-actuated MOEMS mirror[41]. (f) A 3D curved micromirror for collimating the output beam of single-mode fibers[42]. (g) Cross section and top view of an electromechanically driven adaptive astigmatic membrane mirror[43]. (h) A micro-deformable mirror architecture[44].
    (Color online) (a) SEM image of the fabricated MMI-based spectrometer[52]. (b) Multirange spectrometer system[62]. (c) Scanning grating MEMS device (dimensions: 9.6 × 5.3 × 0.5 mm3)[58]. (d) Schematic of the MOEMS spectrometer[51]. (e) SEM image of the scanning diffraction grating[63]. (f) Schematic of the FT spectrometer system on a Si optical bench[64].
    Fig. 3. (Color online) (a) SEM image of the fabricated MMI-based spectrometer[52]. (b) Multirange spectrometer system[62]. (c) Scanning grating MEMS device (dimensions: 9.6 × 5.3 × 0.5 mm3)[58]. (d) Schematic of the MOEMS spectrometer[51]. (e) SEM image of the scanning diffraction grating[63]. (f) Schematic of the FT spectrometer system on a Si optical bench[64].
    (Color online) (a) Schematic of the MEMS-actuated matrix switch[67]. (b) Schematic of polarization-insensitive Si photonic MEMS switches[70]. (c) Schematic representation of a vertically movable silicon photonic MEMS switch[71]. Dimensions are not to scale. (d) SEM image showing the grating switch with a stiffener[74].
    Fig. 4. (Color online) (a) Schematic of the MEMS-actuated matrix switch[67]. (b) Schematic of polarization-insensitive Si photonic MEMS switches[70]. (c) Schematic representation of a vertically movable silicon photonic MEMS switch[71]. Dimensions are not to scale. (d) SEM image showing the grating switch with a stiffener[74].
    Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301
    Download Citation