• Journal of Semiconductors
  • Vol. 43, Issue 8, 081301 (2022)
Shanshan Chen1, Yongyue Zhang1, Xiaorong Hong2, and Jiafang Li2、3、*
Author Affiliations
  • 1Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
  • 2Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 3Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
  • show less
    DOI: 10.1088/1674-4926/43/8/081301 Cite this Article
    Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301 Copy Citation Text show less
    References

    [1] Y Yang, J Wang. The status and application of MEMS technology. Micronanoelectron Technol, 40, 29(2003).

    [2] X N Zang, Q Zhou, J Chang et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng, 132, 192(2015).

    [3] T Kan, A Isozaki, N Kanda et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun, 6, 8422(2015).

    [4] E Arbabi, A Arbabi, S M Kamali et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 9, 812(2018).

    [5] P Pitchappa, M Manjappa, C P Ho et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater, 4, 541(2016).

    [6] G Ciuti, M Nardi, P Valdastri et al. HuMOVE: A low-invasive wearable monitoring platform in sexual medicine. Urology, 84, 976(2014).

    [7] G Ciuti, N Pateromichelakis, M Sfakiotakis et al. A wireless module for vibratory motor control and inertial sensing in capsule endoscopy. Sens Actuat A, 186, 270(2012).

    [8] G Sgandurra, L Bartalena, G Cioni et al. Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (caretoy): A RCT protocol. BMC Pediatr, 14, 268(2014).

    [9] W Li, J Ma, S Yang. Applications of MOEMS in optical communication. Shenzhen Univ J, 19, 43(2002).

    [10] C T C Nguyen. Microelectromechanical devices for wireless communications. IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, 1(1998).

    [11] Z You, K Gong, J Lu. Development of smallsat technology and its thinking. Sci Technoly Rev, 3, 43(2001).

    [12] F Picard, S Ilias, D Asselin et al. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: A technology review and scale-down study. J Phys: Conf Ser, 276, 012182(2011).

    [13] Y Li, T Endo, K Hane. Projection type micro-optical encoder based on MEMS technology. Acta Optica Sinica, 8, 1005(2003).

    [14] M Finot, M McDonald, B Bettman et al. Thermally tuned external cavity laser with micromachined silicon etalons: Design, process and reliability. 54th Electronic Components and Technology Conference, 818(2004).

    [15] C Marxer, P Griss, N F de Rooij. A variable optical attenuator based on silicon micromechanics. IEEE Photonics Technol Lett, 11, 233(1999).

    [16] M Kozhevnikov, N R Basavanhally, J D Weld et al. Compact 64 x 64 micromechanical optical cross connect. IEEE Photonics Technol Lett, 15, 993(2003).

    [17] X H Ma, G S Kuo. Optical switching technology comparison: Optical MEMS vs. other technologies. IEEE Commun Mag, 41, S16(2003).

    [18] W M Green, M J Rooks, L Sekaric et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt Express, 15, 17106(2007).

    [19] L J Hornbeck. The DMDTM projection display chip: A MEMS-based technology. MRS Bull, 26, 325(2001).

    [20] D Dudley, W M Duncan, J Slaughter. Emerging digital micromirror device (DMD) applications. Conference on MOEMS Display and Imaging Systems, 14(2003).

    [21] X M Zhang, Q W Zhao, A Q Liu et al. Asymmetric tuning schemes of MEMS dual-shutter VOA. J Light Technol, 26, 569(2008).

    [22] S Velicu, C Buurma, J D Bergeson et al. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays. Conference on Image Sensing Technologies - Materials, Devices, Systems, and Applications, 9100, 91000F(2014).

    [23] Z Y Zhou, Z L Wang, L W Lin. Microsystems and nanotechnology(2012).

    [24] Q Man. Process integration and optimization of silicon substrate MEMS(2021).

    [25] M O Faruque, R Al Mahmud, R H Sagor. Heavily doped silicon: A potential replacement of conventional plasmonic metals. J Semicond, 42, 062302(2021).

    [26] Y L Yin, J Li, Y Xu et al. Silicon-graphene photonic devices. J Semicond, 39, 061009(2018).

    [27] W M Zhu, X M Zhang, A Q Liu et al. A micromachined optical double well for thermo-optic switching via resonant tunneling effect. Appl Phys Lett, 92, 251101(2008).

    [28] H Cai, A Q Liu, X M Zhang et al. Tunable dual-wavelength laser constructed by silicon micromachining. Appl Phys Lett, 92, 051113(2008).

    [29] C Marxer, M A Grétillat, V P Jaecklin et al. Megahertz opto-mechanical modulator. Sens Actuat A, 52, 46(1996).

    [30] O Manzardo, H P Herzig, C R Marxer et al. Miniaturized time-scanning Fourier transform spectrometer based on silicon technology. Opt Lett, 24, 1705(1999).

    [31] M C Wu, O Solgaard, J E Ford. Optical MEMS for lightwave communication. J Lightwave Technol, 24, 4433(2006).

    [32] D Sarid, D Iams, V Weissenberger et al. Compact scanning-force microscope using a laser diode. Opt Lett, 13, 1057(1988).

    [33] P Pliska, W Lukosz. Integrated-optical acoustical sensors. Sens Actuat A, 41, 93(1994).

    [34] M C Oh, J W Kim, K J Kim et al. Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides. IEEE Photonics Technol Lett, 21, 501(2009).

    [35] X L Zhou, Q X Yu. Wide-range displacement sensor based on fiber-optic fabry–perot interferometer for subnanometer measurement. IEEE Sens J, 11, 1602(2011).

    [36] R Waters, C Tally, B Dick et al. Design and analysis of a novel electro-optical MEMS gyroscope for navigation applications. 2010 IEEE Sensors Conference, 1690(2010).

    [37] H J Yu, P Zhou, W J Shen. Fast-scan MOEMS mirror for HD laser projection applications. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, 265(2021).

    [38] P T Brown, R Kruithoff, G J Seedorf et al. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device. Biomed Opt Express, 12, 3700(2021).

    [39] F Y Li, P Zhou, T T Wang et al. A large-size MEMS scanning mirror for speckle reduction application. Micromachines, 8, 140(2017).

    [40] Q Chen, J L Ding, W Wang et al. A high fill factor 1 × 20 MEMS mirror array based on ISC bimorph structure. 2016 International Conference on Optical MEMS and Nanophotonics (OMN), 1(2016).

    [41] M S Ahn, J Jeon, K W Jang et al. Large-area and ultrathin MEMS mirror using silicon micro rim. Micromachines, 12, 754(2021).

    [42] Y Sabry, D Khalil, B Saadany et al. In-plane optical beam collimation using a three-dimensional curved MEMS mirror. Micromachines, 8, 134(2017).

    [43] U Kallmann, M Lootze, U Mescheder. Simulative and experimental characterization of an adaptive astigmatic membrane mirror. Micromachines, 12, 156(2021).

    [44] F Zamkotsian. Moems, micro-optics for astronomical instrumentation. Conference of the NATO-Advanced-Study-Institute on Optics in Astrophysics, 107(2005).

    [45] F Zamkotsian, W Noell. MOEMS devices designed and tested for astronomical instrumentation in space. SPIE MOEMS-MEMS. Conference on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices XI(2012).

    [46] B Wang, Z Z Liang, Y M Kong et al. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Phys Sin, 59, 907(2010).

    [47] H Omran, Y M Sabry, M Sadek et al. Wideband subwavelength deeply etched multilayer silicon mirrors for tunable optical filters and SS-OCT applications. IEEE J Sel Top Quantum Electron, 21, 157(2015).

    [48] J Briere, P O Beaulieu, M Saidani et al. Rotational MEMS mirror with latching arm for silicon photonics. Conference on MOEMS and Miniaturized Systems XIV, 9375, 20(2015).

    [49] T Takeshita, T Yamashita, N Makimoto et al. Development of ultra-thin MEMS micro mirror device. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2143(2017).

    [50] A Fawzy, O M El-Ghandour, H F A Hamed. Notice of violation of IEEE publication principles: Optical coupling of 3D silicon micromirrors. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems, 465(2018).

    [51] R El Ahdab, S Sharma, F Nabki et al. Wide-band silicon photonic MOEMS spectrometer requiring a single photodetector. Opt Express, 28, 31345(2020).

    [52] B M Al-Demerdash, M Medhat, Y M Sabry et al. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges. Conference on MOEMS and Miniaturized Systems XIII, 8977, 195(2014).

    [53] I S El-Sayed, Y M Sabry, W E ElZeiny et al. Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry–Perot interferometers. Appl Opt, 57, 7225(2018).

    [54] Y M Eltagoury, Y M Sabry, D A Khalil. All-silicon double-cavity Fourier-transform infrared spectrometer on-chip. Adv Mater Technol, 4, 1900441(2019).

    [55] B Mortada, M Z Erfan, M Medhat et al. Wideband optical MEMS interferometer enabled by multimode interference waveguides. J Lightwave Technol, 34, 2145(2016).

    [56] J Y Chai, K Zhang, Y Xue et al. Review of MEMS based Fourier transform spectrometers. Micromachines, 11, 214(2020).

    [57] Y M Sabry, Y M Eltagoury, A Shebl et al. In-plane deeply-etched optical MEMS Notch filter with high-speed tunability. J Opt, 17, 125703(2015).

    [58] T Pügner, J Knobbe, H Grüger. Near-infrared grating spectrometer for mobile phone applications. Appl Spectrosc, 70, 734(2016).

    [59] K Yu, D Lee, U Krishnamoorthy et al. Micromachined Fourier transform spectrometer on silicon optical bench platform. Sens Actuat A, 130/131, 523(2006).

    [60] I Samir, Y M Sabry, M Z Erfan et al. MEMS FTIR spectrometer with enhanced resolution for low cost gas sensing in the NIR. Conference on MOEMS and Miniaturized Systems XVII, 10545, 89(2018).

    [61] A O Ghoname, Y M Sabry, M Anwar et al. Attenuated total reflection (ATR) MEMS FTIR spectrometer. Conference on MOEMS and Miniaturized Systems XIX, 11293, 170(2020).

    [62] A M Salem, Y M Sabry, A Fathy et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors. Adv Mater Technol, 6, 2001013(2021).

    [63] R Farrugia, B Portelli, I Grech et al. A concave moems scanning diffraction grating for infrared micro-spectrometer applications. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 783(2021).

    [64] W Wang, J P Chen, A S Zivkovic et al. A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror. J Microelectromechan Syst, 25, 347(2016).

    [65] D G Jung, S H Son, S Y Kwon et al. Silicon prism-based NIR spectrometer utilizing MEMS technology. J Sens Sci Technol, 26, 91(2017).

    [66] X Tu, C L Song, T Y Huang et al. State of the art and perspectives on silicon photonic switches. Micromachines, 10, 51(2019).

    [67] M C Wu, T J Seok, S Han et al. Large-scale, MEMS-actauated silicon photonic switches. 2015 International Conference on Photonics in Switching, 124(2015).

    [68] S Han, T J Seok, N Quack et al. Monolithic 50×50 MEMS silicon photonic switches with microsecond response time(2014).

    [69] T J Seok, N Quack, S Han et al. 50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers(2015).

    [70] S Han, T J Seok, K Yu et al. Large-scale polarization-insensitive silicon photonic MEMS switches. J Lightwave Technol, 36, 1824(2018).

    [71] H Sattari, A Y Takabayashi, P Edinger et al. Low-voltage silicon photonic MEMS switch with vertical actuation. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 298(2021).

    [72] P Edinger, C Errando-Herranz, A Y Takabayashi et al. Compact low loss MEMS phase shifters for scalable field-programmable silicon photonics. 2020 Conference on Lasers and Electro-Optics, 1(2020).

    [73] A Y Takabayashi, H Sattari, P Edinger et al. Broadband compact single-pole double-throw silicon photonic MEMS switch. J Microelectromechan Syst, 30, 322(2021).

    [74] E H Cook, S J Spector, M G Moebius et al. Polysilicon grating switches for LiDAR. J Microelectromechan Syst, 29, 1008(2020).

    [75] T J Seok, N Quack, S Han et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64(2016).

    [76] X S Zhang, K Kwon, J Henriksson et al. A 20 × 20 focal plane switch array for optical beam steering. 2020 Conference on Lasers and Electro-Optics, 1(2020).

    [77] T Sandner, T Grasshoff, E Gaumont et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers. J Micro-Nanolithogr MEMS MOEMS, 13, 011115(2014).

    [78] Q B Lu, J Bai, K W Wang et al. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromechan Syst, 26, 859(2017).

    [79] T Graziosi, H Sattari, T J Seok et al. Silicon photonic MEMS variable optical attenuator. Conference on MOEMS and Miniaturized Systems XVII, 10545, 114(2018).

    [80] T Yokino, K Kato, A Ui et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology. Conference on MOEMS and Miniaturized Systems XVIII, 10931, 55(2019).

    [81] Q Y Nie, Y Y Xie, F Chang. MEMS blazed gratings fabricated using anisotropic etching and oxidation sharpening. AIP Adv, 10, 065216(2020).

    [82] P Szyszka, T Grzebyk, M Białas et al. Towars portable MEMS mass spectrometer. 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 1(2019).

    [83] D Zheng, D K Wang, Y K Yoon et al. A silicon optical bench-based forward-view two-axis scanner for microendoscopy applications. Micromachines, 11, 1051(2020).

    [84] D K Wang, S J Koppal, H K Xie. A monolithic forward-view MEMS laser scanner with decoupled raster scanning and enlarged scanning angle for micro LiDAR applications. J Microelectromechan Syst, 29, 996(2020).

    Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301
    Download Citation