• Photonics Research
  • Vol. 10, Issue 3, 758 (2022)
Li Song and Edmund Y. Lam*
Author Affiliations
  • Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.447862 Cite this Article Set citation alerts
    Li Song, Edmund Y. Lam, "Fast and robust phase retrieval for masked coherent diffractive imaging," Photonics Res. 10, 758 (2022) Copy Citation Text show less
    References

    [1] S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, J. Stöhr. Lensless imaging of magnetic nanostructures by x-ray spectro-holography. Nature, 432, 885-888(2004).

    [2] A. Ozcan, E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng., 18, 77-102(2016).

    [3] T. Zeng, E. Y. Lam. Robust reconstruction with deep learning to handle model mismatch in lensless imaging. IEEE Trans. Comput. Imaging, 7, 1080-1092(2021).

    [4] D. Sayre. Some implications of a theorem due to Shannon. Acta Crystallogr., 5, 843(1952).

    [5] R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett., 99, 098103(2007).

    [6] W. Harm, C. Roider, A. Jesacher, S. Bernet, M. Ritsch-Marte. Lensless imaging through thin diffusive media. Opt. Express, 22, 22146-22156(2014).

    [7] J. Miao, P. Charalambous, J. Kirz, D. Sayre. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

    [8] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [9] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, M. Segev. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag., 32, 87-109(2015).

    [10] J. A. Rodriguez, R. Xu, C.-C. Chen, Y. Zou, J. Miao. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr., 46, 312-318(2013).

    [11] D. S. Weller, A. Pnueli, G. Divon, O. Radzyner, Y. C. Eldar, J. A. Fessler. Undersampled phase retrieval with outliers. IEEE Trans. Comput. Imaging, 1, 247-258(2015).

    [12] K. Huang, N. D. Sidiropoulos. Consensus-ADMM for general quadratically constrained quadratic programming. IEEE Trans. Signal Process., 64, 5297-5310(2016).

    [13] P. Villanueva-Perez, F. Arcadu, P. Cloetens, M. Stampanoni. Contrast-transfer-function phase retrieval based on compressed sensing. Opt. Lett., 42, 1133-1136(2017).

    [14] B. Shi, Q. Lian, X. Huang, N. An. Constrained phase retrieval: when alternating projection meets regularization. J. Opt. Soc. Am. B, 35, 1271-1281(2018).

    [15] C. A. Metzler, P. Schniter, A. Veeraraghavan, R. G. Baraniuk. prDeep: robust phase retrieval with a flexible deep network. International Conference on Machine Learning, 3501-3510(2018).

    [16] F. Momey, L. Denis, T. Olivier, C. Fournier. From Fienup’s phase retrieval techniques to regularized inversion for in-line holography: tutorial. J. Opt. Soc. Am. A, 36, D62-D80(2019).

    [17] H. Yan. Ptychographic phase retrieval by proximal algorithms. New J. Phys., 22, 023035(2020).

    [18] H. Chang, S. Marchesini, Y. Lou, T. Zeng. Variational phase retrieval with globally convergent preconditioned proximal algorithm. SIAM J. Imag. Sci., 11, 56-93(2018).

    [19] A. Goy, K. Arthur, S. Li, G. Barbastathis. Low photon count phase retrieval using deep learning. Phys. Rev. Lett., 121, 243902(2018).

    [20] G. Zhang, T. Guan, Z. Shen, X. Wang, T. Hu, D. Wang, Y. He, N. Xie. Fast phase retrieval in off-axis digital holographic microscopy through deep learning. Opt. Express, 26, 19388-19405(2018).

    [21] E. J. Candes, X. Li, M. Soltanolkotabi. Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal., 39, 277-299(2015).

    [22] E. J. Candes, X. Li, M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory, 61, 1985-2007(2015).

    [23] T. T. Cai, X. Li, Z. Ma. Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow. Ann. Stat., 44, 2221-2251(2016).

    [24] B. Gao, Z. Xu. Phaseless recovery using the Gauss–Newton method. IEEE Trans. Signal Process., 65, 5885-5896(2017).

    [25] W. Luo, W. Alghamdi, Y. M. Lu. Optimal spectral initialization for signal recovery with applications to phase retrieval. IEEE Trans. Signal Process., 67, 2347-2356(2019).

    [26] P. Netrapalli, P. Jain, S. Sanghavi. Phase retrieval using alternating minimization. IEEE Trans. Signal Process., 63, 4814-4826(2015).

    [27] T. Qiu, P. Babu, D. P. Palomar. PRIME: phase retrieval via majorization-minimization. IEEE Trans. Signal Process., 64, 5174-5186(2016).

    [28] N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, L. Waller. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5, 1-9(2018).

    [29] T. Zeng, E. Y. Lam. Model-based network architecture for image reconstruction in lensless imaging. Proc. SPIE, 11551, 115510B(2020).

    [30] I. Johnson, K. Jefimovs, O. Bunk, C. David, M. Dierolf, J. Gray, D. Renker, F. Pfeiffer. Coherent diffractive imaging using phase front modifications. Phys. Rev. Lett., 100, 155503(2008).

    [31] Y. H. Lo, L. Zhao, M. Gallagher-Jones, A. Rana, J. J. Lodico, W. Xiao, B. Regan, J. Miao. In situ coherent diffractive imaging. Nat. Commun., 9, 1826(2018).

    [32] J. W. Goodman. Introduction to Fourier Optics(2017).

    [33] Y. Zhang, P. Song, Q. Dai. Fourier ptychographic microscopy using a generalized anscombe transform approximation of the mixed Poisson-Gaussian likelihood. Opt. Express, 25, 168-179(2017).

    [34] I. Kang, F. Zhang, G. Barbastathis. Phase extraction neural network (PhENN) with coherent modulation imaging (CMI) for phase retrieval at low photon counts. Opt. Express, 28, 21578-21600(2020).

    [35] Z. Xu, E. Y. Lam. Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization. Opt. Lett., 34, 1453-1455(2009).

    [36] S. Boyd, N. Parikh, E. Chu. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers(2011).

    [37] R. Remmert. Theory of Complex Functions(1991).

    [38] N. Parikh, S. Boyd. Proximal algorithms. Found. Trends Optim., 1, 127-239(2014).

    [39] Y. Romano, M. Elad, P. Milanfar. The little engine that could: regularization by denoising (RED). SIAM J. Imag. Sci., 10, 1804-1844(2017).

    [40] Z. Wu, Y. Sun, J. Liu, U. Kamilov. Online regularization by denoising with applications to phase retrieval. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 1-9(2019).

    [41] M. Pham, P. Yin, A. Rana, S. Osher, J. Miao. Generalized proximal smoothing (GPS) for phase retrieval. Opt. Express, 27, 2792-2808(2019).

    [42] J. Weickert. Coherence-enhancing diffusion filtering. Int. J. Comput. Vis., 31, 111-127(1999).

    [43] S. Lefkimmiatis, A. Roussos, P. Maragos, M. Unser. Structure tensor total variation. SIAM J. Imag. Sci., 8, 1090-1122(2015).

    [44] Z. Ren, E. Y. Lam, J. Zhao. Acceleration of autofocusing with improved edge extraction using structure tensor and Schatten norm. Opt. Express, 28, 14712-14728(2020).

    [45] J. Angulo. Structure tensor image filtering using Riemannian 1 and center-of-mass. Image Anal. Stereol., 33, 95-105(2014).

    [46] C. Harris, M. Stephens. A combined corner and edge detector. Alvey Vision Conference, 147-151(1988).

    [47] V. Caselles, A. Chambolle, M. Novaga. Total variation in imaging. Handbook of Mathematical Methods in Imaging, 1, 1455-1499(2015).

    [48] M. J. Shensa. The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process., 40, 2464-2482(1992).

    [49] Y. Wang, W. Yin, J. Zeng. Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput., 78, 29-63(2019).

    [50] Y. M. Lu, G. Li. Spectral initialization for nonconvex estimation: high-dimensional limit and phase transitions. IEEE International Symposium on Information Theory (ISIT), 3015-3019(2017).

    [51] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [52] Y. Chen, E. J. Candès. Solving random quadratic systems of equations is nearly as easy as solving linear systems. Commun. Pure Appl. Math., 70, 822-883(2017).

    [53] Y. Li, F. Santosa. A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process., 5, 987-995(1996).

    [54] https://www.physics.ucla.edu/research/imaging/ISCDI/. https://www.physics.ucla.edu/research/imaging/ISCDI/