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Conventional phase retrieval algorithms for coherent diffractive imaging (CDI) require many iterations to deliver
reasonable results, even using a known mask as a strong constraint in the imaging setup, an approach known as
masked CDI. This paper proposes a fast and robust phase retrieval method for masked CDI based on the alter-
nating direction method of multipliers (ADMM). We propose a plug-and-play ADMM to incorporate the prior
knowledge of the mask, but note that commonly used denoisers are not suitable as regularizers for complex-valued
latent images directly. Therefore, we develop a regularizer based on the structure tensor and Harris corner de-
tector. Compared with conventional phase retrieval methods, our technique can achieve comparable
reconstruction results with less time for the masked CDI. Moreover, validation experiments on real in situ CDI
data for both intensity and phase objects show that our approach is more than 100 times faster than the baseline
method to reconstruct one complex-valued image, making it possible to be used in challenging situations, such as
imaging dynamic objects. Furthermore, phase retrieval results for single diffraction patterns show the robustness
of the proposed ADMM. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.447862

1. INTRODUCTION

It is possible for lensless imaging to achieve high image reso-
lution in the imaging system [1], with a space–bandwidth prod-
uct larger than that of lens-based setups [2]. Since no lens is
required, this approach is cost effective and possible to be em-
bedded in portable devices [3]. Lensless imaging has been ap-
plied to different disciplines, such as crystallography [4],
material science [5], and biological imaging [6]. It mainly takes
advantage of the diffraction process, which can encode the ob-
ject information in captured data.

Among different configurations for lensless imaging, coher-
ent diffractive imaging (CDI) is a powerful one with a simple
imaging setup [7]. The object is illuminated with a coherent
light source, and an imaging sensor is used to capture its
far-field intensity image. Compared with conventional imaging
setups, the imaging resolution of CDI is limited by the wave-
length of the coherent light instead of the property of the lens.
If coherent light with an ultrashort wavelength, such as X-rays,
is used, the resolution can be greatly improved.

Although the optical setup for CDI is quite simple, the cap-
tured image is only the intensity pattern in the far field. Hence,
an important step in the reconstruction algorithm, called phase
retrieval, is required to retrieve the lost phase information from
the interference fringes [8].However, due to the non-uniqueness
of the phase retrieval problem, some prior constraints in the

object plane and imaging plane are required in most phase
retrieval algorithms [9]. Some widely used constraints in the ob-
ject plane are the size and location of the object [10].

When the structure of the object is complicated, these simple
constraints are not sufficient to obtain satisfactorily recon-
structed images. Conventional phase retrieval methods, such
as the hybrid input–output (HIO) method [8], need many iter-
ations and a good initial guess to solve this problem. There also
exist some first-order algorithms for phase retrieval.Most are also
iterative methods, such as the alternating direction method of
multipliers (ADMM) [11–14], shrinkage or thresholding algo-
rithms [15,16], and proximal algorithms [17,18]. However,
some of these methods consider only the case in which latent
images are real-valued, while in real applications, they are often
complex-valued, and the phase information is also important.
Also, most of them adopt different kinds of prior knowledge for
regularization, such as a deep denoiser [15], l1 or related regu-
larization functions [16], but nearly all of them consider only
natural images, which may not be efficient for the latent images
in CDI. Deep learning methods can also be used for phase
retrieval [19,20], but they need sufficient training images or ac-
curate imaging models to generate synthetic training images.

The phase retrieval problem has also been investigated
from the perspective of signal processing and optimization.
The general problem they consider is the coded diffraction
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pattern (CDP) setup [21], which goes beyond the conventional
CDI model with only the Fourier transform of the object. In
this setup, different patterns are used as sensing matrices to
spread the frequency information of a target, making it easier
to reconstruct computationally with multiple measurements. A
variety of phase retrieval algorithms are designed based on this,
such as Wirtinger flow (WF) and its variants [22,23], Gauss–
Newton method [24], spectral method [25], alternating min-
imization [26], and majorization–minimization [27]. These
methods often have some restrictions on the sensing matrices
or target objects. For example, sensing matrices are required to
follow the Gaussian model [22,25,26], to be complete bases of
the sensing space [24], or the target object is sparse [23].
Usually, more efforts are needed in designing optical systems
to meet these requirements.

To take advantage of more accurate prior knowledge, it is
possible to add some pre-designed strong constraints in the im-
aging systems directly. Some encoding masks, such as diffuser
[28,29] and phase masks [30], can provide additional informa-
tion to help with the reconstruction process. These coding el-
ements are often hand-crafted with some prior knowledge,
which shows the possibility of designing higher-resolution im-
aging systems for specific applications. For example, a simple
masked CDI setup with an additional static area in the object
plane, known as in situ CDI [31], is shown in Fig. 1. A dual
pinhole is set in front of the object plane (middle plane in
Fig. 1) to split the coherent light into two paths. One region
on the object plane provides a static area in the imaging process,
which can be regarded as efficient and solid prior knowledge in
the object plane. The other part on the object plane is the sam-
ple area, which is dynamic. The imaging sensor is set in the far
field to capture the oversampled Fourier intensity images. The
image reconstruction problem for in situ CDI is to recover im-
ages of the dynamic area from the captured intensity images
with the help of the static area. In these masked CDI setups,
more prior knowledge can be used for algorithm design, which
can improve the quality, robustness, and speed of
reconstruction.

The main contributions of this paper are summarized as
follows.

• We propose a phase retrieval algorithm for masked CDI
using ADMM. The proposed ADMM is in a plug-and-play

(PnP) style, allowing for different hand-crafted or learning-
based regularization functions with respect to complex-valued
latent images.

• Since the commonly used regularization functions in
computational phase retrieval algorithms are designed or
trained for real-valued natural images only, they are not suitable
for complex-valued images in masked CDI experiments. We
therefore design a regularization function based on the struc-
ture tensor and Harris corner detector in the complex domain.

• We test our algorithm on real in situ CDI data, and the
experimental results show that our method can achieve com-
parable results with the baseline method presented in
Ref. [31], but the processing speed is ∼100× faster per frame.
Our method is also more robust even for the single diffraction
pattern phase retrieval problem.

2. PRINCIPLES AND METHODS

A. Foundation of the Inverse Problem
In a masked CDI setup, coherent light illuminates a coded
aperture p�x, y� and then transmits to the object plane.
The incident light l i�x, y� can be calculated by the Fresnel
diffraction integral [32]

l i�x, y� �
ejkzi

jλzi

ZZ �∞

−∞
exp

�
jk
2zi

��x − ξ�2 � �y − η�2�
�
dξdη,

(1)

where zi is the distance between the mask and the object plane,
k is the wavenumber, and λ is the wavelength. The transmis-
sivity û�x, y� of the whole object plane can be represented as

û�x, y� � a�x, y�ejθ�x,y�, (2)

where a�x, y� is the amplitude modulation, and θ�x, y� is the
phase shift. In this work, we consider a more general math-
ematical model with respect to the whole object plane. We as-
sume that in a masked CDI setup, the object plane is partially
known, which is called the static region, and it remains static
during the whole imaging process. Also, the location of the un-
known object is fixed in a known region of interest, which is
called a dynamic region, i.e., image of the object we are con-
cerned with, and its content changes in different experiments.
These two regions do not overlap with each other.

The whole object plane is composed of these two parts. A
background maskmb�x, y� and an object maskmo�x, y� indicate
the locations of the static region and dynamic region on the
object plane, respectively, such that

û�x, y� � mb�x, y�r�x, y� � mo�x, y�u�x, y�, (3)

where r�x, y� is the transmissivity of the pinhole or other
known patterns, and u�x, y� is the transmissivity of the object
of interest. Note that if the background mask mb is a zero ma-
trix, then this model will revert to the conventional CDI model,
where only the location and shape of the target object are
known. In this algorithm, we incorporate the prior knowledge
related to the static area into the algorithm design as a strong
constraint, which can help with the reconstruction process.

After the object is illuminated by the incident light, the
emergent light l e�x, y� can be obtained as

l e�x, y� � l i�x, y�û�x, y�: (4)Fig. 1. Typical masked CDI: in situ CDI setup [31].
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Then, it propagates to the far-field detector plane such that

l o�x, y� � F fl e�x, y�g, (5)

where Ff·g is the discrete Fourier transform. The captured im-
age on the sensor is intensity only:

o�x, y� � jl o�x, y�j: (6)

The task is to reconstruct u�x, y� from o�x, y� with the known
masksmb,mo, static pattern r, and the probe l i. This is the basic
inverse imaging problem for the masked CDI setup, which is ill
posed and non-convex.

B. ADMM with a Plug-and-Play Style for Masked CDI
For convenience, all the 2D matrices, such as o�x, y�, are
vectorized and represented by their bold variables, such as o.
The imaging model can be represented in a more compact
form:

o � jFL�W br �W ou�j, (7)

where L � diag�l i�,W b � diag�mb�, W o � diag�mo�, and F
is the discrete Fourier transform matrix with a proper dimen-
sion. If the phase information ϕ of the captured image o is
obtained, u can easily be derived by the inverse step. We note
that this model can also be regarded as a specific CDP setup,
where the system matrix A in the masked CDI setup is actually
A � FLW o. However, as summarized in Section 1, the general
methods designed for the CDP setup have some requirements
on the property of the system matrix A, such as the i.i.d.
Gaussian assumption. In the masked CDI setup, the system
matrix A � FLW o does not satisfy these requirements, making
these methods less efficient for the masked CDI setup directly.

In real applications, the capturing process of many imaging
devices, such as CCDs, is subject to various signal-dependent
and signal-independent errors, which can be represented by a
Poisson–Gaussian noise model [33]. This is typically handled
by denoising [33] or introducing a strong regularization
prior [34]. As the solution of a phase retrieval problem is
not unique and the noise model should be taken into consid-
eration, we introduce a regularization function R�·� to find a
proper solution with respect to the prior knowledge [35].
Then, phase retrieval for masked CDI becomes an optimization
problem:

minimize R�u� � C�ϕ�
subject to FLû � o ∘ ϕ

û � W br �W ou, (8)

where ∘ is the Hadamard product, and C�ϕ� is an indicator
function to make the modulus of the elements in ϕ equal
to one, i.e.,

C�ϕ� �
�
0, jϕj � 1
∞, otherwise

: (9)

Note that this function is a circle in the complex plane, which is
non-convex. For simplicity, we consider the setup in which the
two masks are binary masks, and then u can be directly ob-
tained from û as

u � W o�û −W br�: (10)

Since mo and mb do not overlap, W oW b is a zero matrix. This

means that when calculating u, we do not need the exact value
of r, but û is dependent on r.

The whole optimization problem we are trying to solve can
be written as

minimize R�u� � C�ϕ�
subject to FLû � o ∘ ϕ,

u � W o�û −W br�: (11)

ADMM [36] can be used to solve this problem iteratively. First,
using the Lagrange multiplier, the augmented Lagrangian is

L�û,ϕ, u, λ, μ� � R�u� � C�ϕ� � ρ

2
kFLû − o ∘ ϕ� λk22

� τ

2
ku −W o�û −W br� � μk22, (12)

where λ and μ are the Lagrange multipliers, and ρ and τ are the
penalty parameters. ADMM can minimize L by considering
different variables separately. Only one variable is updated in
each step. For example, in the �k � 1�th iteration, when var-
iable û is updated, other variables ϕ, u, λ, μ are regarded as con-
stants with their current values. The û-update step aims at
solving a sub-problem:

û�k�1� � argmin
û

L�û,ϕ�k�, u�k�, λ�k�, μ�k��: (13)

Then a necessary condition for û�k�1� is

∇ûL�û,ϕ�k�, u�k�, λ�k�, μ�k��jû�û�k�1� � 0: (14)

In the complex domain, the required derivatives are regarded as
Wirtinger derivatives [37]. The partial derivative of L with re-
spect to variable û is

∇ûL � ρ�FL�H �FLû − o ∘ ϕ� λ�
� τWH

o �W oû − u −W oW br − μ�: (15)

After setting Eq. (15) to zero and substituting other variables
with their current values, we can obtain the û-update step as

û�k�1� � �ρLHFHFL� τWH
o W o�−1�ρ�FL�H �o ∘ ϕ�k� − λ�k��

� τWH
o �u�k� �W oW br � μ�k���: (16)

Similarly, other update steps are

ϕ�k�1� � Po�λ�k� � FLû�k�1��, (17)

u�k�1� � proxR
τ
�W o�û�k�1� −W br − μ�k���, (18)

λ�k�1� � λ�k� � FLû�k�1� − o ∘ ϕ�k�1�, (19)

μ�k�1� � μ�k� � u�k�1� −W o�û�k�1� −W br�, (20)

where Po is a projection operator defined as

Po�s��i� �
� s�i�∕o�i�

ks�i�∕o�i� , o�i� ≠ 0, s�i� ≠ 0

1, otherwise
: (21)

Variable i refers to the ith element, and prox�·� is the proximal
operator defined as [38]

proxR
τ
�v� � argmin

x

�
R�x� � τ

2
kx − vk

�
: (22)
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The proposed ADMM algorithm for masked CDI is summa-
rized in Algorithm 1.

Algorithm 1. PnP-ADMM for Masked CDI

Input: o: captured diffraction pattern; L: probe; W o,W b: dynamic
and static masks; r: known static pattern; R: regularization function;
û�0�,ϕ�0�, u�0�, λ�0�, μ�0�: initial values; ρ, τ: penalty parameters; ϵtol:
error tolerance.
Output: optimal reconstructed image u�
1: repeat
2: û�k�1� � �ρLHFHFL� τWH

o W o�−1�ρ�FL�H �o ∘ ϕ�k� − λ�k��
3: � τWH

o �u�k� �W oW br � μ�k���;
4: ϕ�k�1� � Po�λ�k� � FLû�k�1��;
5: u�k�1� � proxR

τ
�W o�û�k�1� −W br − μ�k���;

6: λ�k�1� � λ�k� � FLû�k�1� − o ∘ ϕ�k�1�;
7: μ�k�1� � μ�k� � u�k�1� −W o�û�k�1� −W br�.
8: until

�
ku�k�1�−u�k�k2
ku�k�1�k2 < ϵtol

�

C. Regularization Functions
We have developed the ADMM algorithm in a plug-and-play
style, allowing for different kinds of regularization functions.
Here, we investigate regularization functions that are efficient
for denoising complex-valued images.

1. Regularization by Denoising
Regularization by denoising (RED) is a commonly used
method of designing regularization functions according to
the denoisers, instead of using denoisers directly to minimize
some implicit functions [39]. In particular, the regularization
function is designed as

R�x� � xH �x −D�x��, (23)
where D�·� is any proper denoiser. In the real domain, this
function penalizes the residual x −D�x� and the correlation
with latent images at the same time, which is shown to be ef-
ficient [15,40].

Now, we consider the case x � xr � jxi, where xr and xi
are the real and imaginary parts, respectively. IfD�·� is a learned
denoiser, then for complex-valued images, the real and imagi-
nary parts are regarded as two channels. The regularization
function is

R�x� � �xr � jxi�H f�xr −D�xr�� � j�xi −D�xi��g: (24)
This regularization function is not real-valued. Hence, it is not
suitable to be used directly for regularization.

Even using trained denoisers cannot help to solve this prob-
lem. If the useful information is related only to phase informa-
tion xp instead of amplitude information xa, then the real and
imaginary parts are xa ∘ sin xp and xa ∘ cos xp, respectively.
After trigonometric transformations, the prior knowledge for
natural images is not suitable for the real and imaginary parts
anymore. Hence, we need to design new regularization func-
tions for complex-valued images directly based on some statis-
tical properties.

2. Quadratic Regularization Functions
In this work, we use the quadratic smoothing method [41], and
the regularization function is designed as a quadratic penalty
function:

R�x� � γxHQx, (25)

where Q is a real-valued positive semi-definite matrix. For ex-
ample, if Q is selected as an identity matrix, then the
regularization function is a simple l2 norm, which minimizes
the transmitted energy.

The structure tensor, also known as the second-moment ma-
trix, is useful for image filtering, holography, feature tracking,
etc. [42–44]. The original structure tensor is defined as

S � G � �∇u∇uH �, (26)

where ∇ is the 2D differential operator, and G is a Gaussian
kernel for smoothing [45]. Generally, at each location �x0, y0�,
this matrix has two eigenvalues g1 and g2 (assume jg1j ≥ jg2j).
When both jg1j and jg2j are small, there are only small varia-
tions in the neighborhood of this location, which means that
this region is homogeneous. If jg1j is significantly larger than
jg2j, then there is only large variation in a dominate direction,
which is the edge region. If jg1j and jg2j are both large, then
this location has high variations in all directions, which means
it is close to an image corner. The complexity of the structure
for an image is highly related to the number of edges and cor-
ners inside. To avoid the explicit eigenvalue decomposition of
the structure tensor, the Harris corner detector [46] adopts the
trace and determinant to design the edge and corner responses.

Following the idea of a structure tensor and Harris corner
detector, since we want to find the solution with the simplest
structure in the solution set, we need to care about only the
trace of the structure tensor and make it as small as possible to
construct more homogeneous areas. Hence, we selectQ as a 2D
Laplacian operator matrix, and the quadratic structure is then
suitable for smoothing. The regularization function is now the
sum of the traces of all structure tensors in each location, which
can help to find a proper solution with the simplest structure.

There are also some other regularization functions that can
construct homogeneous areas, such as total variation (TV) and
its variants [47], and wavelet transform [48]. Compared with
the quadratic regularization functions, the proximal operators
of these functions have more complicated expressions. Most of
them are designed based on the l1 norm, whose proximal op-
erator is a soft-thresholding function. We need to transfer these
operators to the complex domain from the real domain, before
embedding in the PnP-ADMM method.

3. EXPERIMENTS

A. Imaging Setup
To assess the efficiency of our method, we make use of the
experimental in situ CDI data collected by Ref. [31]. The data-
set consists of two optical experiments. The first experiment is
an application in material science. In situ CDI is used to capture
the growth of Pb dendrites on electrodes immersed in
Pb�NO3�2. A 543 nm He–Ne laser with a power of 5 mW
is used to generate a collimated beam with a diameter of
800 μm. A dual pinhole aperture with two 100 μm circle holes
spaced 100 μm apart is directly illuminated, and then the
electro-chemical cell is 400 μm downstream of the aperture.
A sealed fluid cell was assembled to observe the dynamics of
Pb dendrites and separate it from the static area. An objective
lens with 35 mm focal length is placed just downstream of the
cell. One pinhole is placed in front of the cell, and another
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pinhole is focused on the region without any dendrite. A 12 V
direct current source is applied to the cell. Finally, a CCD de-
tector with 1340 × 1300 pixels resolution and 20 × 20 μm
pixel size is used to capture images at the back focal plane
of the lens. The location of the CCD detector is static, making
the object-to-sensor distance the same for all diffraction pat-
terns. A 5 × 5 ptychography is required for each image.
Another experiment is related to biological imaging. In situ
CDI is adopted to monitor the activation of glioblastoma cells.
The same He–Ne laser is used to illuminate the live glioblas-
toma cells sealed between two cover slips. The same ptychog-
raphy is also required.

B. Algorithm Setup
The parameters in ADMM are set as ρ � τ � 1.0 and
γ � 0.01, where the penalty parameters are set to be suffi-
ciently large according to the convergence analysis in
Ref. [49]. In the Pb growth experiment, the error tolerance
is set as ϵtol � 0.7. In the glioblastoma experiment, the error
tolerance is set as ϵtol � 0.25. The initial guess of the phase

ϕ�0� is a vector with all elements equal to one, û�0� is initialized
as the union of the two masks multiplied by the probe, with
reference to the spectral initialization commonly used for the
CDP setup [25,50], and all the other vectors are initialized
as zero.

According to the imaging setup of in situ CDI, some prior
information is provided in the dataset. The two binary masks
mb and mo are given with reference to the structure of the dual
pinhole. The incident light on the object plane, called the
probe, is also known. The task is to reconstruct the com-
plex-valued image of the object using prior knowledge and
the diffraction patterns. We compare our algorithm with a
baseline algorithm that is also available online [31]. Both algo-
rithms are implemented in MATLAB on a computer with Intel
Core i5-8500 CPU at 3.00 GHz and 16 GB RAM.

C. Pb Growth Experiment
We first test our algorithm with the Pb growth experiment.
In this case, the amplitude information shows the growth of
Pb dendrites. The reconstruction results of ADMM and the

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 2. Imaging results of the Pb growth experiment (amplitude reconstructions). (a)–(f ), (m)–(r) ADMM phase retrieval results for No. 1–12
diffraction patterns; (g)–(l), (s)–(x) phase retrieval results for No. 1–12 diffraction patterns using the baseline method, respectively.
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baseline method are shown in Fig. 2. Different columns are
imaging results with only intensity information at different
times in the whole experiment. Imaging results of the Pb den-
drites (blue part in the circle region) are almost identical using
these two methods.

Then we introduce two metrics to evaluate the convergence
property of ADMM. The R-factor evaluates the difference be-
tween reconstructed images and captured images in the mea-
surement domain as

R�û, o� � kjFLûj − ok2: (27)

The relative error is defined as

ϵ�k�1�
rel � ku�k�1� − u�k�k2

ku�k�1�k2
, (28)

which shows the updates during the iterations. Note that for
phase retrieval, we can recover the signal only up to a constant
global phase shift ϕ0 as u�ejϕ0 , compared with the true value
u�. However, as we cannot obtain the value of u� or u�ejϕ0 in
advance, we need to rely on the relative error ϵ�k�1�

rel between
two successive iterations to determine when to terminate the
iteration process. We normally do so when it is smaller than

a given tolerance, and the current solution is regarded as a stable
solution. The R-factor and the relative error during ADMM
iterations are shown in Fig. 3. We can see that both converge
quickly. Since in real optical experiments, the optical conditions
of the static area are not always the same as the known pattern
(see Fig. 4), they do not converge to zero. Although these two
planes are not the same, the main illumination patterns in the
support area are similar.

To examine whether the proposed method can achieve com-
parable results with the baseline method, we calculate the rel-
ative peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [51] between the reconstruction results
from ADMM and the baseline method, and the results are
summarized in Table 1. All achieve >31 dB PSNR and
>0.84 SSIM. Visual results in Fig. 2 also show that the
two methods can achieve comparable image quality in this
experiment.

We also compare our method with some other classical
phase retrieval methods, mainly WF-based methods [22,52].
The phase retrieval results for the No. 1 image of the WF
method and the truncated WF (TWF) method are shown
in Fig. 5. We can find that even for the object with the simplest
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Fig. 3. ADMM iterations for the Pb growth experiment (different colors for different diffraction patterns). Both converge quickly. (a) Error.
(b) R-factor.
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Fig. 4. Reconstructed object planes for No. 1 diffraction pattern. The main difference is the area outside the support. (a) ADMM. (b) Baseline.
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structure (No. 1 diffraction pattern) in this experiment, WF-
based methods cannot provide valid information related to the
Pb growth status. These results also show that the restrictions
on the sensing matrices, such as the Gaussian model, are im-
portant to the phase retrieval qualities of these methods.

D. Glioblastoma Experiment
In the glioblastoma imaging experiment, the phase images show
the status of glioblastoma cells. We first investigate the conver-
gence of the ADMM with the relative error and
R-factor in Fig. 6. As before, since we optimize only the dy-
namic region, the R-factor does not converge to zero, but a cer-
tain non-zero value after several iterations.

Imaging results with only phase information at different
times are shown in Fig. 7. From Figs. 7(a) to 7(f ) and
Figs. 7(m) to 7(r), we can see that the smaller cell on the right
moved to the bigger one, and then they merged together in
these images. ADMM results show good agreement with the
baseline in situ CDI results. However, there are more artifacts
in the latter. As we can see in Figs. 7(k), 7(l), 7(s), 7(t), and
7(u), these artifacts may even change the shape of the merged
cell, which can bring disturbances to the observation. With
ADMM, the cell images are much clearer with less background
noise and simpler image structures.

To give clearer evaluations of the reconstructed phase im-
ages of these two methods, we calculate the TV loss [53] of
all the images, and the results are summarized in Table 2.
We can see that for all diffraction patterns, ADMM has lower
TV loss than the baseline method, which means that it can
achieve phase retrieval results with simpler structures.

E. Processing Time
The baseline method for in situ CDI is an updated version of
the HIO method [8], and the update step is by gradient
descent. Compared with this, a main advantage of our method
is its high speed. The processing time of these two methods for

Table 1. Numerical Comparison between ADMM and
Baseline Method for Pb Growth Experiment

No. 1 2 3 4 5 6

PSNR (dB) 31.0 32.5 33.5 34.7 34.7 34.1
SSIM 0.88 0.85 0.84 0.86 0.86 0.86

No. 7 8 9 10 11 12

PSNR (dB) 34.0 33.4 33.7 34.3 33.6 33.1
SSIM 0.85 0.84 0.86 0.86 0.86 0.86

(a) (b) (c) (d)

Fig. 5. Imaging results of No. 1 diffraction pattern in the Pb growth experiment (amplitude reconstructions) using different phase retrieval
methods. (a) Baseline. (b) ADMM. (c) WF. (d) TWF.
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Fig. 6. ADMM iterations for the glioblastoma experiment (different colors for different diffraction patterns). (a) Error. (b) R-factor.
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different in situ CDI experiments is shown in Tables 3 and 4
and Fig. 8. ADMM needs only less than 0.5 s for a single dif-
fraction pattern, while the baseline method needs more than
30 s for the same pattern. Specifically, the processing time
of the baseline method is 39.29∕0.37 � 106.19 times longer
than that of ADMM in the Pb growth experiment, and
40.38∕0.34 � 118.76 times longer in the glioblastoma experi-
ment. Both the WF and TWF methods need more than 900 s
for one diffraction pattern.

In our method, we separate the whole optimization problem
into several sub-problems that are easier to solve, where closed-
form solutions are obtained for these sub-problems. Compared
with the alternating methods between the image space and
Fourier space, directly solving the inverse problem is more ef-
ficient. Although in one iteration ADMM uses the proximal
method and is slower than the simple gradient descent step,
it can converge with modest accuracy within a few iterations

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 7. Imaging results of the glioblastoma experiment (phase reconstructions). (a)–(f ), (m)–(r) ADMM phase retrieval results for No. 1–12
diffraction patterns; (g)–(l), (s)–(x) phase retrieval results for No. 1–12 diffraction patterns using the baseline method, respectively.

Table 2. Mean Total Variation Loss of Different Methods
for Glioblastoma Experiment

No. 1 2 3 4 5 6

ADMM 0.599 0.601 0.595 0.642 0.816 0.820
Baseline 0.846 0.822 0.869 0.940 1.372 1.527

No. 7 8 9 10 11 12

ADMM 0.818 0.811 0.779 0.722 0.705 0.648
Baseline 1.485 1.445 1.397 1.316 1.365 1.378

Table 3. Processing Time of Different Algorithms in Pb
Growth Experiment (Unit: s)

No. 1 2 3 4 5 6 7

ADMM 0.39 0.38 0.37 0.37 0.38 0.37 0.37
Baseline 39.41 40.74 38.80 39.10 39.29 38.96 39.23

No. 8 9 10 11 12 Avg Var

ADMM 0.37 0.36 0.37 0.36 0.37 0.37 7 × 10−5
Baseline 39.24 39.12 39.24 38.88 39.45 39.29 0.25
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[36], while the baseline method needs many more iterations.
Hence, our method is faster overall to give reconstructed
images.

F. Phase Retrieval with Single Diffraction Pattern
In the two experiments above, ADMMdoes not take advantage
of the relationship among different diffraction patterns, but the
baseline method combines these patterns to update the static
area in the object plane, based on the fact that this area is the
same among different patterns during the experiment. In this
section, we compare our ADMM method with the baseline
method for phase retrieval with only one diffraction pattern
available to the algorithms.

We randomly choose one diffraction pattern from the Pb
growth experiment and glioblastoma experiment. The phase

retrieval results for different algorithms with different kinds
of objects are shown in Fig. 9. We can easily find that the per-
formance of the baseline method drops significantly for both
experiments. The reconstructed image in Fig. 9(a) is less clear
than in Fig. 9(b), the ADMM result. For a phase-only object,
the baseline method even diverges and cannot give any mean-
ingful information in Fig. 9(c), while ADMM in Fig. 9(d) is
not influenced by the reduction of diffraction patterns. An ex-
planation for this is that ADMMdoes not care about the region
outside the dynamic area or the static area in the object plane,
since they are mainly caused by noise, pinhole diffraction, etc.
[see Fig. 4(b)]. Hence, although the imaging model is actually

FL�W ou�W br � �1 −W o −W b�n� � y ∘ ϕ, (29)

object u is not related to disturbance n, and we can solve the
phase retrieval problem directly with existence of these disturb-
ances as noise. However, the baseline method tries to find the
exact value of n and then u, making the problem more com-
plicated; hence, more diffraction patterns are required, and it
does not perform well for the single diffraction pattern phase
retrieval problem.

4. CONCLUSION

In summary, we present a fast and robust ADMM that can re-
trieve proper phase maps according to the diffraction patterns
in masked CDI. Our method is plug-and-play, allowing for dif-

Table 4. Processing Time of Different Algorithms in
Glioblastoma Experiment (Unit: s)

No. 1 2 3 4 5 6 7

ADMM 0.35 0.34 0.34 0.33 0.33 0.34 0.33
Baseline 40.25 39.97 39.93 40.64 40.56 40.14 40.15

No. 8 9 10 11 12 Avg Var

ADMM 0.34 0.34 0.34 0.34 0.34 0.34 2 × 10−5
Baseline 41.09 39.76 40.56 40.00 41.50 40.38 0.27

0 2 4 6 8 10 12

No.

-1

-0.5

0

0.5

1

1.5

2

lo
g 

tim
e(

s)

Processing time in Pb growth experiment

ADMM
Baseline

(a)

0 2 4 6 8 10 12

No.

-1

-0.5

0

0.5

1

1.5

2

lo
g 

tim
e(

s)

Processing time in Glioblastoma experiment

ADMM
Baseline

(b)

Fig. 8. Processing time in different experiments (unit: s). (a) Pb growth experiment. (b) Glioblastoma experiment.

(a) (b) (c) (d)

Fig. 9. Phase retrieval results with single diffraction pattern. (a), (b) Baseline method and ADMMmethod for No. 10 diffraction pattern in the Pb
growth experiment; (c), (d) baseline method and ADMM method for No. 7 diffraction pattern in the glioblastoma experiment, respectively.
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ferent kinds of regularization functions as prior knowledge. We
also design quadratic regularization functions according to the
structure tensor and Harris corner detector, which can denoise
and find the simplest structure in the complex domain directly,
instead of separating complex-valued images into real and
imaginary parts, simplifying the algorithm design.

In optical experiments, we can see that compared with the
conventional phase retrieval methods for masked CDI, our
ADMM approach is much faster. Less background noise
and clearer phase images further indicate the power of the de-
signed regularization functions. Although the imaging results of
Pb dendrites using the baseline method seem to have sharper
edges with the help of the background patterns, in some more
complicated cases, such as retrieving the phase of the phase-
only objects in the glioblastoma experiment, the background
patterns bring strong disturbances to the observation of the
cells, making it less robust than ADMM. Our method also per-
forms well even with a single diffraction pattern, showing the
robustness of our method.
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