• Opto-Electronic Advances
  • Vol. 2, Issue 1, 180026 (2019)
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
  • show less
    DOI: 10.29026/oea.2019.180026 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Surface plasmon enhanced infrared photodetection[J]. Opto-Electronic Advances, 2019, 2(1): 180026 Copy Citation Text show less
    References

    [1] L H Kidder, I W Levin, E N Lewis, V D Kleiman, E J Heilweil. Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging. Opt Lett, 22, 742-744(1997).

    [2] C C Phillips. Doping superlattices based on InSb for mid-infrared detector applications. Appl Phys Lett, 56, 151-153(1990).

    [3] Z L Yuan, B E Kardynal, A W Sharpe, A J Shields. High speed single photon detection in the near infrared. Appl Phys Lett, 91, 041114(2007).

    [4] M Hostut, M Alyoruk, Y Ergun, I Sokmen. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A, 98, 269-273(2010).

    [5] A Rogalski. Infrared Detectors(2000).

    [6] X Q Chen, X L Liu, B Wu, H Nan, H Y Guo et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett, 17, 6391-6396(2017).

    [7] D K Gramotnev, S I Bozhevolnyi. Nanofocusing of electromagnetic radiation. Nat Photonics, 8, 13-22(2014).

    [8] L Y M Tobing, L Tjahjana, D H Zhang, Q Zhang, Q H Xiong. Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum. Adv Opt Mater, 2, 280-285(2014).

    [9] L Y M Tobing, D H Zhang. Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures. Adv Mater, 28, 889-896(2016).

    [10] L Y M Tobing, Y Luo, K S Low, D W Zhang, D H Zhang. Observation of the kinetic inductance limitation for the fundamental magnetic resonance in Ultrasmall gold v-shape split ring resonators. Adv Opt Mater, 4, 1047-1052(2016).

    [11] V E Ferry, L A Sweatlock, D Pacifici, H A Atwater. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett, 8, 4391-4397(2008).

    [12] X M Wang, Z Z Cheng, K Xu, H K Tsang, J B Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics, 7, 888-891(2013).

    [13] J C Tong, L Y M Tobing, P N Ni, D H Zhang. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode. Appl Surf Sci, 427, 605-608(2018).

    [14] J C Tong, L Y M Tobing, L Qian, F Suo, D H Zhang. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature. J Mater Sci, 53, 13010-13017(2018).

    [15] F Suo, J C Tong, L Qian, D H Zhang. Study of dark current in mid-infrared InAsSb-based hetero n-i-p photodiode. J Phys D Appl Phys, 51, 275102(2018).

    [16] S Maimon, G W Wicks. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 89, 151109(2006).

    [17] N Baril, A Brown, P Maloney, M Tidrow, D Lubyshev et al. Bulk InAsxSb1-x nBn photodetectors with greater than 5 μm cutoff on GaSb. Appl Phys Lett, 109, 122104(2016).

    [18] A Akbari, R N Tait, P Berini. Surface plasmon waveguide Schottky detector. Opt Express, 18, 8505-8514(2010).

    [19] W Wu, A Bonakdar, H Mohseni. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett, 96, 161107(2010).

    [20] E S Kulkarni, S P Heussler, A V Stier, I Martin-Fernandez, H Andersen et al. Exploiting the IR transparency of graphene for fast pyroelectric infrared detection. Adv Opt Mater, 3, 34-38(2015).

    [21] M Alavirad, L Roy, P Berini. Surface plasmon enhanced photodetectors based on internal photoemission. J Photonics Energy, 6, 042511(2016).

    [22] H A Atwater, A Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 9, 205-213(2010).

    [23] S A Maier. Plasmonics: Fundamentals and Applications(2007).

    [24] M W Knight, H Sobhani, P Nordlander, N J Halas. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [25] J C Tong, W Zhou, Y Qu, Z J Xu, Z M Huang et al. Surface Plasmon induced direct detection of long wavelength photons. Nat Commun, 8, 1660(2017).

    [26] W L Barnes, A Dereux, T W Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [27] D Sevenler, N L Ünlü, M S Ünlü. Nanoparticle biosensing with interferometric reflectance imaging. In Nanobiosensors and Nanobioanalyses(2015).

    [28] A Sobhani, M W Knight, Y M Wang, B Zheng, N S King et al. Narrowband photodetection in the near-infrared with a Plasmon-induced hot electron device. Nat Commun, 4, 1643(2013).

    [29] M Alavirad, A Olivieri, L Roy, P Berini. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt Express, 24, 22544-22554(2016).

    [30] J C Tong, L Y M Tobing, S P Qiu, D H Zhang, A G Unil Perera. Room temperature Plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl Phys Lett, 113, 011110(2018).

    [31] A I Yakimov, V V. Kirienko, V A Armbrister, A A Bloshkin, A V Dvurechenskii. Surface Plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface. Appl Phys Lett, 112, 171107(2018).

    [32] T W Ebbesen, H J Lezec, H F Ghaemi, T Thio, P A Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [33] M Y Chen, L Shao, S V Kershaw, H Yu, J F Wang et al. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano, 8, 8208-8216(2014).

    [34] Z Jakšić, M Milinović, D Randjelović. Nanotechnological enhancement of infrared detectors by Plasmon resonance in transparent conductive oxide nanoparticles. Strojniški Vestn - J Mech Eng, 58, 367-375(2012).

    [35] B Desiatov, I Goykhman, N Mazurski, J Shappir, J B Khurgin et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2, 335-338(2015).

    [36] S Ogawa, D Fujisawa, M Shimatani, K Matsumoto. Graphene on Plasmonic metamaterials for infrared detection. Proc SPIE, 9819, 98191S(2016).

    [37] J C Tong, L Y M Tobing, D H Zhang. Electrically controlled enhancement in plasmonic mid-infrared photodiode. Opt Express, 26, 5452-5460(2018).

    [38] J C Tong, LYM Tobing, Y Luo, D W Zhang, D H Zhang. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Sci Rep, 8, 1548(2018).

    [39] J C Tong, Y Y Xie, Z J Xu, S P Qiu, P N Ni et al. Study of dual color infrared photodetection from n-GaSb/n-InAsSb heterostructures. AIP Adv, 6, 025120(2016).

    [40] S P Qiu, L Y M Tobing, J C Tong, Y Y Xie, Z J Xu et al. Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection. Opt Quantum Electron, 48, 203(2016).

    [41] S P Qiu, L Y M Tobing, Z J Xu, J C Tong, P N Ni et al. Surface Plasmon enhancement on infrared Photodetection. Proc Eng, 140, 152-158(2016).

    [42] J A Nolde, M Kim, C S Kim, E M Jackson, C T Ellis et al. Resonant quantum efficiency enhancement of Midwave infrared nBn photodetectors using one-dimensional plasmonic gratings. Appl Phys Lett, 106, 261109(2015).

    [43] E M Jackson, J A Nolde, M Kim, C S Kim, E R Cleveland et al. Two-dimensional plasmonic grating for increased quantum efficiency in midwave infrared nBn detectors with thin absorbers. Opt Express, 26, 13850-13864(2018).

    [44] C Scales, I Breukelaar, P Berini. Surface-Plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Opt Lett, 35, 529-531(2010).

    [45] Z F Yu, G Veronis, S H Fan, M L Brongersma. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett, 89, 151116(2006).

    [46] Y Yao, R Shankar, P Rauter, Y Song, J Kong et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced Photocarrier generation and collection. Nano Lett, 14, 3749-3754(2014).

    [47] Y Yao, M A Kats, P Genevet, N F Yu, Y Song et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett, 13, 1257-1264(2013).

    [48] Y Salamin, P Ma, B Baeuerle, A Emboras, Y Fedoryshyn et al. 100 GHz plasmonic photodetector. ACS Photonics, 5, 3291-3297(2018).

    [49] C Y Chang, H Y Chang, C Y Chen, M W Tsai, Y T Chang et al. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett, 91, 163107(2007).

    [50] C C Chang, Y D Sharma, Y S Kim, J A Bur, R V Shenoi et al. A surface Plasmon enhanced infrared photodetector based on InAs Quantum dots. Nano Lett, 10, 1704-1709(2010).

    [51] A I Yakimov, V V Kirienko, A A Bloshkin, V A Armbrister, A V Dvurechenskii et al. Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons. Opt Express, 25, 25602-25611(2017).

    [52] P Vasinajindakaw, J Vaillancourt, G R Gu, R Y Liu, Y F Ling et al. A Fano-type interference enhanced quantum dot infrared photodetector. Appl Phys Lett, 98, 211111(2011).

    [53] Y Yifat, M Ackerman, P Guyot-Sionnest. Mid-IR colloidal quantum dot detectors enhanced by optical Nano-antennas. Appl Phys Lett, 110, 041106(2017).

    [54] X Tang, G F Wu, K W C Lai. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J Mater Chem C, 5, 362-369(2017).

    [55] G T Liu, A Stintz, H Li, T C Newell, A L Gray et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures. IEEE J Quantum Electron, 36, 1272-1279(2000).

    [56] S J Lee, Z Ku, A Barve, J Montoya, W Y Jang et al. A monolithically integrated plasmonic infrared quantum dot camera. Nat Commun, 2, 286(2011).

    [57] B Schwarz, P Reininger, D Ristanić, H Detz, A M Andrews et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat Commun, 5, 4085(2014).

    [58] S Q Zhai, J Q Liu, F Q Liu, Z G Wang. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett, 100, 181104(2012).

    [59] T D Dao, S Ishii, T Yokoyama, T Sawada, R P Sugavaneshwar et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors. ACS Photonics, 3, 1271-1278(2016).

    [60] J Y Suen, K B Fan, J Montoya, C Bingham, V Stenger et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica, 4, 276-279(2017).

    [61] D Palaferri, Y Todorov, A Bigioli, A Mottaghizadeh, D Gacemi et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature, 556, 85-88(2018).

    [62] H X Huang, F L Wang, Y Liu, S Wang, L M Peng. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl Mater Interfaces, 9, 12743-12749(2017).

    [63] F F Ren, K W Ang, J D Ye, M B Yu, G Q Lo et al. Split bull's eye shaped aluminum antenna for Plasmon-enhanced nanometer scale germanium photodetector. Nano Lett, 11, 1289-1293(2011).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Surface plasmon enhanced infrared photodetection[J]. Opto-Electronic Advances, 2019, 2(1): 180026
    Download Citation