• High Power Laser Science and Engineering
  • Vol. 9, Issue 2, 02000e30 (2021)
S. Borneis1、2, T. Laštovička1, M. Sokol1, T.-M. Jeong1, F. Condamine1, O. Renner1, V. Tikhonchuk1、3, H. Bohlin1, A. Fajstavr1, J.-C. Hernandez1, N. Jourdain1, D. Kumar1, D. Modřanský1, A. Pokorný1, A. Wolf1, S. Zhai1, G. Korn1, and S. Weber1、4、*
Author Affiliations
  • 1ELI-Beamlines Center, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic
  • 2GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
  • 3Centre Lasers Intenses et Applications, University of Bordeaux - CNRS - CEA, Talence, France
  • 4School of Science, Xi’an Jiaotong University, Xi’an, China
  • show less
    DOI: 10.1017/hpl.2021.16 Cite this Article Set citation alerts
    S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine, O. Renner, V. Tikhonchuk, H. Bohlin, A. Fajstavr, J.-C. Hernandez, N. Jourdain, D. Kumar, D. Modřanský, A. Pokorný, A. Wolf, S. Zhai, G. Korn, S. Weber. Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e30 Copy Citation Text show less

    Abstract

    The design and the early commissioning of the ELI-Beamlines laser facility’s 30 J, 30 fs, 10 Hz HAPLS (High-repetition-rate Advanced Petawatt Laser System) beam transport (BT) system to the P3 target chamber are described in detail. It is the world’s first and with 54 m length, the longest distance high average power petawatt (PW) BT system ever built. It connects the HAPLS pulse compressor via the injector periscope with the 4.5 m diameter P3 target chamber of the plasma physics group in hall E3. It is the largest target chamber of the facility and was connected first to the BT system. The major engineering challenges are the required high vibration stability mirror support structures, the high pointing stability optomechanics as well as the required levels for chemical and particle cleanliness of the vacuum vessels to preserve the high laser damage threshold of the dielectrically coated high-power mirrors. A first commissioning experiment at low pulse energy shows the full functionality of the BT system to P3 and the novel experimental infrastructure.
    $${\displaystyle \begin{array}{l}\kern1.48em E\left(x,y\right)=\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty}E\left(\xi, \eta \right)h\left(x-\xi, y-\eta \right) \textrm{d}\xi \textrm{d}\eta, \\ {}\kern1.48em h\left(x,y\right)=\frac{e^{j k z}}{j\lambda z}\exp \left[\frac{j k}{2z}\left({x}^2+{y}^2\right)\right],\\[6pt] {}\kern1.24em E\left(x,y\right)=\frac{e^{j k z}}{j\lambda z}{e}^{\frac{j k}{2z}\left({x}^2+{y}^2\right)}\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty}\left[E\left(\xi, \eta \right){e}^{j\frac{k}{2z}\left({\xi}^2+{\eta}^2\right)}\right]\\ \quad{}\kern3.72em \times {e}^{-j\frac{2\pi }{\lambda z}\left( x\xi + y\eta \right)} \textrm{d}\xi \textrm{d}\eta, \\ {}H\left({f}_x,{f}_y\right)=\mathrm{\mathcal{F}}\left\{\frac{e^{j k z}}{j\lambda z}\exp \left[j\frac{\pi }{\lambda z}\left({x}^2+{y}^2\right)\right]\right\}\\ {}\kern3.48em ={e}^{j k z}\exp \left[- j\pi \lambda z\left({f}_x^2+{f}_y^2\right)\right],\end{array}}$$((1))

    View in Article

    $$\begin{align}E(y)={E}_o\exp \left(-\frac{y^2}{2{a}^2}+ j\alpha \sin {k}_{\perp }y\right),\end{align}$$((2))

    View in Article

    $${\displaystyle \begin{array}{l}E\left(y,z\right)\kern1em =\kern1em \frac{E_o}{\sqrt{1- jz/{z}_R}}\exp \left(-\frac{y^2/2{a}^2}{1- jz/{z}_R}\right) \\ {}\kern4.48em \times\sum \limits_{n=-\infty}^{\infty }{J}_n\left(\alpha \right)\exp \left(-{jnk}_{\perp}\frac{y+{nk}_{\perp }z/2{k}_{\mathrm{las}}}{1- jz/{z}_R}\right),\end{array}}$$((3))

    View in Article

    $$\begin{align}{z}_{\lambda }={\lambda}^2/2{\lambda}_{\mathrm{laser}}={\left(5.6\ \mathrm{ mm}\right)}^2/0.8\kern0.22em \mu \mathrm{m}=39.2\kern0.22em \mathrm{m}.\end{align}$$((4))

    View in Article

    $$\begin{align}\textrm{SD}(s)=s\frac{\Gamma \left(\frac{n-1}{2}\right)}{\Gamma \left(n/2\right)}\sqrt{\frac{n-1}{2}-{\left[\frac{\Gamma \left(n/2\right)}{\Gamma \left(\frac{n-1}{2}\right)}\right]}^2},\end{align}$$((5))

    View in Article

    S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine, O. Renner, V. Tikhonchuk, H. Bohlin, A. Fajstavr, J.-C. Hernandez, N. Jourdain, D. Kumar, D. Modřanský, A. Pokorný, A. Wolf, S. Zhai, G. Korn, S. Weber. Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e30
    Download Citation