• Journal of Semiconductors
  • Vol. 40, Issue 8, 081506 (2019)
Yilun Gu1, Shengli Guo1, and Fanlong Ning1、2
Author Affiliations
  • 1Zhejiang Province Key Laboratory of Quantum Technology and Device and Department of Physics, Zhejiang University, Hangzhou 310027, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081506 Cite this Article
    Yilun Gu, Shengli Guo, Fanlong Ning. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR[J]. Journal of Semiconductors, 2019, 40(8): 081506 Copy Citation Text show less
    References

    [1] S Von Molnar, D Read. New materials for semiconductor spin-electronics. Proc IEEE, 91, 715(2003).

    [2] B T Matthias, R M Bozorth, J H Van Vleck. Ferromagnetic interaction in EuO. Phys Rev Lett, 7, 160(1961).

    [3] N Menyuk, t K Dwight, t R J Arnott et al. Ferromagnetism in CdCr2Se4 and CdCr2S4. J Appl Phys, 37, 1387(1966).

    [4] A Twardowski, H J M Swagten, W J M de Jonge et al. Magnetic behavior of the diluted magnetic semiconductor Zn1–xMnxSe. Phys Rev B, 36, 7013(1987).

    [5] D Ferrand, t J Cibert, a A Wasiela et al. Carrier-induced ferromagnetism in p-Zn1–xMnxTe. Phys Rev B, 63, 085201(2001).

    [6] R L Aggarwal, n S N Jasperson, z J Stankiewicz et al. Magnetoreflectance at the band edge in Cd1–xMnxSe. Phys Rev B, 28, 6907(1983).

    [7] A Haury, A Wasiela, t A Arnoult et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 79, 511(1997).

    [8] H Ohno, A Shen, a F Matsukura et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 69, 363(1996).

    [9] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [10] T Jungwirth, J Sinova, J Mašek et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 78, 809(2006).

    [11] T Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 9, 965(2010).

    [12] M Wang, R P Campion, A W Rushforth et al. Achieving high curie temperature in (Ga, Mn)As. Appl Phys Lett, 93, 132103(2008).

    [13] L Chen, n S Yan, u P F Xu et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 95, 182505(2009).

    [14] L Chen, g X Yang, g F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [15] M Tanaka, S Ohya, i P N Hai. Recent progress in III–V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport. Appl Phys Rev, 1, 011102(2014).

    [16] Z Deng, K Zhao, u B Gu et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. Phys Rev B, 88, 081203(2013).

    [17] Z Deng, n C Q Jin, u Q Q Liu et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2, 422(2011).

    [18] C Ding, H Man, n C Qin et al. (La1–xBax)(Zn1–xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 88, 041102(2013).

    [19] K Zhao, Z Deng, g X C Wang et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ’122’ iron-based superconductors. Nat Commun, 4, 1442(2013).

    [20] S Guo, n H Man, g K Wang et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 99, 155201(2019).

    [21] K Zhao, B Chen, o G Zhao et al. Ferromagnetism at 230 K in (Ba0:7K0:3)(Zn0:85Mn0:15)2As2 diluted magnetic semiconductor. Chin Scie Bull, 59, 2524(2014).

    [22] S Guo, F L Ning. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of fe-based superconductors. Chin Phys B, 27, 097502(2018).

    [23] S R Dunsiger, o J P Carlo, o T Goko et al. Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nat Mater, 9, 299(2010).

    [24] J Masek, J Kudrnovsk, a F Mca et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As. Phys Rev Lett, 98, 067202(2007).

    [25] W Han, n B J Chen, B Gu et al. Li(Cd, Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 9, 7490(2019).

    [26] Q Wang, H Man, C Ding et al. Li1.1(Zn1–xCrx)As: Cr doped I–II–V diluted magnetic semiconductors in bulk form. J Appl Phys, 115, 083917(2014).

    [27] S L Guo, Y Zhao, n H Y Man et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn, Mn, Cu)As with Mn and Cu codoping at the same Zn sites. J Phys: Condens Matter, 28, 366001(2016).

    [28] C Ding, n C Qin, n H Man et al. NMR investigation of the diluted magnetic semiconductor Li(Zn1–xMnx)P (x= 0.1). Phys Rev B, 88, 041108(2013).

    [29] F L Ning, n H Man, g X Gong et al. Suppression of TC by overdoped Li in the diluted ferromagnetic semiconductor Li1+y(Zn1-xMnx)P: A μSR investigation. Phys Rev B, 90, 085123(2014).

    [30] I I Mazin, h D J Singh, s M D Johannes et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1–xFx. Phys Rev Lett, 101, 057003(2008).

    [31] C Ding, X Gong, H Man et al. The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1–xSrx)(Zn1–yMny)AsO. EPL, 107, 17004(2014).

    [32] W Han, o K Zhao, g X Wang et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to 1111 type iron pnictide superconductors. Sci Chin Phys, Mechan Astron, 56, 2026(2013).

    [33] B Chen, Z Deng, i W Li et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn)As with independent spin and charge doping. Sci Rep, 6, 36578(2016).

    [34] X Yang, i Y Li, n C Shen. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200K. Appl Phys Lett, 103, 022410(2013).

    [35] S Guo, H Man, X Gong et al. (Ba1–xKx)(Cu2–xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magn Magn Mater, 400, 295(2016).

    [36] K Zhao, B J Chen, g Z Deng et al. (Ca, Na)(Zn, Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 116, 163906(2014).

    [37] B Chen, g Z Deng, i W Li et al. (Sr1–xNax)(Cd1–xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 120, 083902(2016).

    [38] X Yang, i Y Li, g P Zhang et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 114, 223905(2013).

    [39]

    [40] B Gu, S Maekawa. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 94, 155202(2016).

    [41] H Suzuki, K Zhao, G Shibata et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1–xKx(Zn1–yMny)2As2. Phys Rev B, 91, 140401(2015).

    [42] H Suzuki, G Q Zhao, K Zhao et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1–xKx(Zn1–yMny)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 92, 235120(2015).

    [43] F Sun, N N Li, B J Chen et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1–xKx)(Zn1–yMny)2As2 with independent spin and charge doping. Physl Rev B, 93, 224403(2016).

    [44] F Sun, G Q Zhao, C A Escanhoela et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1–xKx)(Zn1–yMny)2As2. Phys Rev B, 95, 094412(2017).

    [45] M A Surmach, B J Chen, Z Deng et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1–xKx)(Zn1–yMny)2As2. Phys Rev B, 97, 104418(2018).

    Yilun Gu, Shengli Guo, Fanlong Ning. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR[J]. Journal of Semiconductors, 2019, 40(8): 081506
    Download Citation