• Journal of Semiconductors
  • Vol. 40, Issue 8, 081501 (2019)
Qiang Cao and Shishen Yan
Author Affiliations
  • Spintronics Institute, University of Jinan, Jinan 250022, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081501 Cite this Article
    Qiang Cao, Shishen Yan. The predicaments and expectations in development of magnetic semiconductors[J]. Journal of Semiconductors, 2019, 40(8): 081501 Copy Citation Text show less
    References

    [1] S A Wolf, D D Awschalom, R A Buhrman et al. Spintronics: a spin-based electronics vision for the future. Science, 294, 1488(2001).

    [2] K Ando. Seeking Room-temperature ferromagnetic semiconductors. Science, 312, 1883(2006).

    [3] A M A J Fabian, C Ertler, P Stano et al. Semiconductor spintronics. Acta Physica Slovaca, 57, 565(2007).

    [4] T Jungwirth. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 86, 855(2014).

    [5] T Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 9, 965(2010).

    [6] S Chambers. Is it really intrinsic ferromagnetism. Nat Mater, 9, 956(2010).

    [7] C Seife. Can the laws of physics be unified. Science, 309, 82(2005).

    [8] S Chambers, T Droubay, C Wang et al. Ferromagnetism in oxide semiconductors. Mater Today, 9, 28(2006).

    [9] A Mauger, C Godart. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides. Phys Rep, 141, 51(1986).

    [10] J K Furdyna. Diluted magnetic semiconductors. J Appl Phys, 64, R29(1988).

    [11] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [12] B T Matthias, R M Bozorth, J H Van Vleck. Ferromagnetic interaction in EuO. Phys Rev Lett, 7, 160(1961).

    [13] L Zhao, B Zhang, Q Pang et al. Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals. Appl Phys Lett, 89, 092111(2006).

    [14] T M Pekarek, I Miotkowski, B C Crooker. Magnetic measurements on Cd1–xCrxTe and Zn1–xCrxTe. J Appl Phys, 79, 6436(1996).

    [15]

    [16] A E Turner, R L Gunshor, S Datta. New class of materials for optical isolators. Appl Opt, 22, 3152(1983).

    [17] H Ohno, A Shen, F Matsukura et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 69, 363(1996).

    [18] H Wang, L Chen, J Zhao. Enhancement of the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As. Sci Chin Phys, Mechan Astron, 56, 99(2013).

    [19] H Ohno, D Chiba, F Matsukura et al. Electric-field control of ferromagnetism. Nature, 408, 944(2000).

    [20] Y Ohno, D K Young, B Beschoten et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402, 790(1999).

    [21] V Jeudy, J Curiale, J P Adam et al. Current induced domain wall motion in GaMnAs close to the Curie temperature. J Phys: Conden Matter, 23, 446004(2011).

    [22] M Yamanouchi, D Chiba, F Matsukura et al. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn J Appl Phys, 45, 3854(2006).

    [23] A Chernyshov, M Overby, X Liu et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 5, 656(2009).

    [24] C M Jaworski, J Yang, S Mack et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater, 9, 898(2010).

    [25] C M Jaworski, J Yang, S Mack et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys Rev Lett, 106(2011).

    [26] H X Tang, R K Kawakami, D D Awschalom et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 90, 107201(2003).

    [27] C Gould, C Rüster, T Jungwirth et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 93, 117203(2004).

    [28] K Olejník, M H S Owen, V. Novák et al. Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga,Mn)As: A surface oxide control study. Phys Rev B, 78, 054403(2008).

    [29] L Chen, X Yang, F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [30] T Dietl, H Ohno, F Matsukura et al. Zener Model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019(2000).

    [31] N H Hong, J Sakai, A Hassini. Magnetic properties of V-doped ZnO thin films. J Appl Phys, 97, 10D312(2005).

    [32] S Ramachandran, A Tiwari, J Narayan et al. Epitaxial growth and properties of Zn1–xVxO diluted magnetic semiconductor thin films. Appl Phys Lett, 87, 172502(2005).

    [33] H Saeki, H Tabata, T Kawai. Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun, 120, 439(2001).

    [34] M Venkatesan, C B Fitzgerald, J G Lunney et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett, 93, 177206(2004).

    [35] N H Hong, J Sakai, N T Huong et al. Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B, 72, 045336(2005).

    [36] J P Fan, Z Y Quan, X H Xu. Tunable magnetic and transport properties of p-type ZnMnO films with n-type Ga, Cr, and Fe codopants. Appl Phys Lett, 102, 102407(2013).

    [37] D C Kundaliya, S B Ogale, S E Lofland et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nat Mater, 3, 709(2004).

    [38] X M Cheng, C L Chien. Magnetic properties of epitaxial Mn-doped ZnO thin films. J Appl Phys, 93, 7876(2003).

    [39] P Sharma, A Gupta, K V Rao et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater, 2, 673(2003).

    [40] D P Norton, S J Pearton, A F Hebard et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl Phys Lett, 82, 239(2003).

    [41] S Y Park, P J Kim, Y P Lee et al. Realization of room-temperature ferromagnetism and of improved carrier mobility in Mn-doped ZnO film by oxygen deficiency, introduced by hydrogen and heat treatments. Adv Mater, 19, 3496(2007).

    [42] Q Cao, M Fu, G Liu et al. Local vibrational modes competitions in Mn-doped ZnO epitaxial films with tunable ferromagnetism. J Appl Phys, 115, 243906(2014).

    [43] X X Wei, C Song, K W Geng et al. Local Fe structure and ferromagnetism in Fe-doped ZnO films. J Phys: Conden Matter, 18, 7471(2006).

    [44] G L Liu, Q Cao, J X Deng et al. High Tc ferromagnetism of Zn1–xCoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl Phys Lett, 90, 052504(2007).

    [45] Q Cao, J X Deng, G L Liu et al. Epitaxial properties of Co-doped ZnO thin films grown by plasma assisted molecular beam epitaxy. Chin Phys Lett, 24, 2951(2007).

    [46] Q Cao, S He, Y Deng et al. Raman scattering investigations on Co-doped ZnO epitaxial films: Local vibration modes and defect associated ferromagnetism. Curr Appl Phys, 14, 744(2014).

    [47] Z Y Chen, Z Q Chen, B Zou et al. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy. J Appl Phys, 112, 083905(2012).

    [48] T Wakano, N Fujimura, Y Morinaga et al. Magnetic and magneto-transport properties of ZnO: Ni films. Physica E, 10, 260(2001).

    [49] D B Buchholz, R P H Chang, J Y Song et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl Phys Lett, 87, 082504(2005).

    [50] C Sudakar, J S Thakur, G Lawes et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys Rev B, 75, 054423(2007).

    [51] J C A Huang, H S Hsu. Inspection of magnetic semiconductor and clustering structure in CoFe-doped ZnO films by bias-dependent impedance spectroscopy. Appl Phys Lett, 87, 132503(2005).

    [52] Y M Cho, W K Choo, H Kim et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1–x(Co0.5Fe0.5)xO thin films. Appl Phys Lett, 80, 3358(2002).

    [53] D Karmakar, T V C Rao, J V Yakhmi et al. Electronic structure and magnetic properties of (Fe,Co)-codoped ZnO: Theory and experiment. Phys Rev B, 81, 184421(2010).

    [54] S Lisenkov, A N Andriotis, R M Sheetz et al. Effects of codoping on the ferromagnetic enhancement in ZnO. Phys Rev B, 83, 235203(2011).

    [55] L B Duan, G H Rao, Y C Wang et al. Magnetization and Raman scattering studies of (Co, Mn) codoped ZnO nanoparticles. J Appl Phys, 104, 013909(2008).

    [56] J M Coey, M Venkatesan, C B Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 4, 173(2005).

    [57] T Kaspar, T Droubay, S Heald et al. Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys Rev B, 77, 201303(R)(2008).

    [58] N Jedrecy, H J von Bardeleben, D Demaille. High-temperature ferromagnetism by means of oriented nanocolumns: Co clustering in (Zn,Co)O. Phys Rev B, 80, 205204(2009).

    [59] D Zhu, G Liu, Y Tian et al. Decoupled scenario between the conductive carriers and the ferromagnetism in epitaxial Zn0.85–xMgxCo0.15O thin films. Appl Phys Lett, 105, 072404(2014).

    [60] J W Chiou, H M Tsai, C W Pao et al. Role of valence-band Co 3d states on ferromagnetism in Zn1–xCoxO nanorods. Appl Phys Lett, 90, 062103(2007).

    [61] M Kobayashi, Y Ishida, J Hwang et al. Characterization of magnetic components in the diluted magnetic semiconductor Zn1–xCoxO by X-ray magnetic circular dichroism. Phys Rev B, 72, 201201(2005).

    [62] . More than just room temperature. Nat Mater, 9, 951(2010).

    [63] A Zunger, S Lany, H Raebiger. The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory. Physics, 3, 53(2010).

    [64] C Z Chang, X Feng, J Shen et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167(2013).

    [65] Z Wang, C Tang, R Sachs et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys Rev Lett, 114, 016603(2015).

    [66] J Zhou, Q Wang, Q Sun et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 9, 3867(2009).

    [67] D Soriano, N Leconte, P Ordejón et al. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys Rev Lett, 107, 016602(2011).

    [68] B Uchoa, V N Kotov, N M R Peres et al. Localized magnetic states in graphene. Phys Rev Lett, 101, 026805(2008).

    [69] O V Yazyev. Magnetism in disordered graphene and irradiated graphite. Phys Rev Lett, 101, 037203(2008).

    [70] R Faccio, H Pardo, P A Denis et al. Magnetism induced by single carbon vacancies in a three-dimensional graphitic network. Phys Rev B, 77, 035416(2008).

    [71] E V Castro, N M R Peres, T Stauber et al. Low-density ferromagnetism in biased bilayer graphene. Phys Rev Lett, 100, 186803(2008).

    [72] Y Wang, Y Huang, Y Song et al. Room-temperature ferromagnetism of graphene. Nano Lett, 9, 220(2009).

    [73] H S S R Matte, K S Subrahmanyam, C N R Rao. Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C, 113, 9982(2009).

    [74] L Xie, X Wang, J Lu et al. Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl Phys Lett, 98, 193113(2011).

    [75] A Candini, C Alvino, W Wernsdorfer et al. Hysteresis loops of magnetoconductance in graphene devices. Phys Rev B, 83, 121401(2011).

    [76] M Sepioni, R R Nair, S Rablen et al. Limits on intrinsic magnetism in graphene. Phys Rev Lett, 105, 207205(2010).

    [77] R R Nair, M Sepioni, I L Tsai et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 8, 199(2012).

    [78] H Zhang, M Chhowalla, Z Liu. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev, 47, 3015(2018).

    [79] X Wang, Z Song, W Wen et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 1804682(2018).

    [80] J Shi, M Hong, Z Zhang et al. Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coord Chem Rev, 376, 1(2018).

    [81] A Ramasubramaniam, D Naveh. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys Rev B, 87, 195201(2013).

    [82] R Mishra, W Zhou, S J Pennycook et al. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B, 88, 144409(2013).

    [83] L Sun, W Zhou, Y Liang et al. Magnetic properties in Fe-doped SnS2: Density functional calculations. Comput Mater Sci, 117, 489(2016).

    [84] L Seixas, A Carvalho, A H Castro Neto. Atomically thin dilute magnetism in Co-doped phosphorene. Phys Rev B, 91, 155138(2015).

    [85] B Li, T Xing, M Zhong et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 8, 1958(2017).

    [86] C Gong, L Li, Z Li et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546, 265(2017).

    [87] B Huang, G Clark, N Moratalla et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546, 270(2017).

    [88] R B Griffiths. Peierls proof of spontaneous magnetization in a two-dimensional ising ferromagnet. Phys Rev, 136, A437(1964).

    [89] N D Mermin, H Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett, 17, 1133(1966).

    [90] Z Wang, T Zhang, M Ding et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 13, 554(2018).

    [91] S Jiang, J Shan, K F Mak. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 17, 406(2018).

    [92] S Jiang, L Li, Z Wang et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 13, 549(2018).

    [93] B Huang, G Clark, D R Klein et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 13, 544(2018).

    [94] P W Anderson. Localized magnetic states in metals. Phys Rev, 124, 41(1961).

    [95] J R Schrieffer, P A Wolff. Relation between the Anderson and Kondo Hamiltonians. Phys Rev, 149, 491(1966).

    [96] A H MacDonald, P Schiffer, N Samarth. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 4, 195(2005).

    [97] Y J Zeng, N Gauquelin, D Y Li et al. Co-rich ZnCoO nanoparticles embedded in wurtzite Zn1–xCoxO thin films: possible origin of superconductivity. ACS Appl Mater Interfaces, 7, 22166(2015).

    [98] K Akaiwa, K Kaneko, S Fujita et al. Room temperature ferromagnetism in conducting α-(In1–xFex)2O3 alloy films. Appl Phys Lett, 106, 062405(2015).

    [99] N T Tu, P N Hai, L D Anh et al. Magnetic properties and intrinsic ferromagnetism in (Ga,Fe)Sb ferromagnetic semiconductors. Phys Rev B, 92, 144403(2015).

    [100] L Li, Y Guo, X Y Cui et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys Rev B, 85, 174430(2012).

    [101] Q Cao, D Zhu, M Fu et al. Robust ferromagnetism of single crystalline CoxZn1–xO (0.3≤ x ≤ 0.45) epitaxial films with high Co concentration. Appl Phys Lett, 109, 052404(2016).

    [102] Q Cao, M Fu, D Zhu et al. Enhancing s, p–d exchange interactions at room temperature by carrier doping in single crystalline Co0.4Zn0.6O epitaxial films. Appl Phys Lett, 110, 092402(2017).

    [103] Q Cao, M Fu, D Zhu et al. Growth-controlled engineering of magnetic exchange interactions in single crystalline GaCo- ZnO1–v epitaxial films with high Co concentration. Chem Mater, 29, 2717(2017).

    [104] M J Redman, E G Steward. Cobaltous oxide with the zinc blende/wurtzite-type crystal structure. Nature, 193, 867(1962).

    [105] S S Yan, C Ren, X Wang et al. Ferromagnetism and magnetoresistance of Co–ZnO inhomogeneous magnetic semiconductor. Appl Phys Lett, 84, 2376(2004).

    [106] H Q Song, L M Mei, S S Yan et al. Microstructure, ferromagnetism, and magnetic transport of Ti1–xCoxO2 amorphous magnetic semiconductor. J Appl Phys, 99, 123903(2006).

    [107] S S Yan, J P Liu, L M Mei et al. Spin-dependent variable range hopping and magnetoresistance in Ti1–xCoxO2 and Zn1–xCoxO magnetic semiconductor films. J Phys: Condens Matter, 18, 10469(2006).

    [108] Y F Tian, S S Yan, M W Zhao et al. Controllable spin- polarized electrical transport in wide-band-gap oxide ferromagnetic semiconductors. J Appl Phys, 107, 033713(2010).

    Qiang Cao, Shishen Yan. The predicaments and expectations in development of magnetic semiconductors[J]. Journal of Semiconductors, 2019, 40(8): 081501
    Download Citation