• Chinese Optics Letters
  • Vol. 20, Issue 8, 081203 (2022)
Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An*, and Yunqi Fu**
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202220.081203 Cite this Article Set citation alerts
    Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An, Yunqi Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 081203 Copy Citation Text show less
    References

    [1] L. J. Chu. Physical limitations of omni-directional antennas. J. Appl. Phys., 19, 1163(1948).

    [2] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8, 819(2012).

    [3] C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, G. Raithel. Broadband Rydberg atom-based electric-field probe: from self-calibrated measurements to sub-wavelength imaging. IEEE Trans. Antenna Propag., 62, 6169(2014).

    [4] P. Böhi, M. F. Riedel, T. W. Hänsch, P. Treutlein. Imaging of microwave fields using ultracold atoms. Appl. Phys. Lett., 97, 051101(2010).

    [5] P. Böhi, P. Treutlein. Simple microwave field imaging technique using hot atomic vapor cells. Appl. Phys. Lett., 101, 181107(2012).

    [6] A. K. Mohapatra, T. R. Jackson, C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 98, 113003(2007).

    [7] Y. Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 13, 054034(2020).

    [8] D. A. Anderson, R. E. Sapiro, G. Raithel. An atomic receiver for AM and FM radio communication. IEEE Trans. Antenna Propag., 69, 2455(2021).

    [9] D. A. Anderson, E. Paradis, G. Raithel, R. E. Sapiro, C. L. Holloway. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element. 11th Global Symposium on Millimeter Waves (GSMM), 1(2018).

    [10] M. Y. Jing, Y. Hu, J. Ma, H. Zhang, L. J. Zhang, L. T. Xiao, S. T. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16, 911(2020).

    [11] C. L. Holloway, M. T. Simons, M. D. Kautz, A. H. Haddab, J. A. Gordon, T. P. Crowley. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides. Appl. Phys. Lett., 113, 094101(2018).

    [12] M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, G. Raithel. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett., 108, 174101(2016).

    [13] J. A. Sedlacek, A. Schwettmann, H. Kübler, J. P. Shaffer. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett., 111, 063001(2013).

    [14] M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave. Appl. Phys. Lett., 114, 114101(2019).

    [15] D. A. Anderson, R. E. Sapiro, L. F. Gonçalves, R. Cardman, G. Raithel. Atom radio-frequency interferometry(2020).

    [16] A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, C. L. Holloway. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett., 118, 114001(2021).

    [17] M. T. Simons, J. A. Gordon, C. L. Holloway. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor. Appl. Opt., 57, 6456(2018).

    [18] R. Cardman, L. F. Gonçalves, R. E. Sapiro, G. Raithel, D. A. Anderson. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument. Adv. Opt. Tech., 9, 305(2020).

    [19] C. L. Holloway, M. T. Simons, A. H. Haddab, J. A. Gordon, S. D. Voran. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception. IEEE Antennas Propag. Mag., 63, 63(2021).

    [20] D. H. Meyer, Z. A. Castillo, K. C. Cox, P. D. Kunz. Assessment of Rydberg atoms for wideband electric field sensing. J. Phys. B: At. Mol. Opt. Phys., 53, 034001(2020).

    [21] D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 15, 014053(2021).

    [22] D. H. Meyer, K. C. Cox, F. K. Fatemi, P. D. Kunz. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl. Phys. Lett., 112, 211108(2018).

    [23] K. C. Cox, D. H. Meyer, F. K. Fatemi, P. D. Kunz. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett., 121, 110502(2018).

    [24] J. S. Otto, M. K. Hunter, N. Kjærgaard, A. B. Deb. Data capacity scaling of a distributed Rydberg atomic receiver array. J. Appl. Phys., 129, 154503(2021).

    [25] H. Y. Zou, Z. F. Song, H. H. Mu, Z. G. Feng, J. F. Qu, Q. L. Wang. Atomic receiver by utilizing multiple radio-frequency coupling at Rydberg states of rubidium. Appl. Sci., 10, 1346(2020).

    [26] C. L. Holloway, M. T. Simons, J. A. Gordon, D. Novotny. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver. IEEE Antennas Wirel. Propag. Lett., 18, 1853(2019).

    [27] M. T. Simons, A. B. Artusio-Glimpse, C. L. Holloway, E. Imhof, S. R. Jefferts, R. Wyllie, B. C. Sawyer, T. G. Walker. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning. Phys. Rev. A, 104, 032824(2021).

    [28] Y. Sun, Y. Yao, Y. Q. Hao, H. F. Yu, Y. Y. Jiang, L. S. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).

    [29] X. T. Chen, Y. Y. Jiang, B. Li, H. F. Yu, H. F. Jiang, T. Wang, Y. Yao, L. S. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).

    [30] C. E. Shannon. Communication in the presence of noise. Proc. IRE, 37, 10(1949).

    Data from CrossRef

    [1] Jiawei Yao, Qiang An, Yanli Zhou, Kai Yang, Fengchuan Wu, Yunqi Fu. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field. Optics Letters, 47, 5256(2022).

    Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An, Yunqi Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 081203
    Download Citation