• Chinese Optics Letters
  • Vol. 20, Issue 8, 081203 (2022)
Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An*, and Yunqi Fu**
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202220.081203 Cite this Article Set citation alerts
    Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An, Yunqi Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 081203 Copy Citation Text show less

    Abstract

    Based on Autler–Townes splitting and AC Stark shifts, we present a Rydberg atom-based receiver for determining the amplitude modulation (AM) frequency among a wideband carrier range utilizing a cesium atomic vapor cell. To verify this approach, we measured the signal-to-noise ratio and the data capacity with a 10 kHz AM frequency in the carrier range from 2 GHz to 18 GHz. Without changing the lasers, the working band can be easily extended to a higher range by optimizing the feed antenna and experimental configurations.
    ΔAT=Ph|E|,

    View in Article

    ΔStark=12α(ωRF)|E|2.

    View in Article

    C=fAM×log2(1+SNRN=1),

    View in Article

    Kai Yang, Zhanshan Sun, Ruiqi Mao, Yi Lin, Yi Liu, Qiang An, Yunqi Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 081203
    Download Citation