• Advanced Photonics
  • Vol. 4, Issue 6, 064002 (2022)
Trevon Badloe1、†, Seokho Lee1, and Junsuk Rho1、2、3、*
Author Affiliations
  • 1Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang, Republic of Korea
  • 2Pohang University of Science and Technology, Department of Chemical Engineering, Pohang, Republic of Korea
  • 3POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.4.6.064002 Cite this Article Set citation alerts
    Trevon Badloe, Seokho Lee, Junsuk Rho. Computation at the speed of light: metamaterials for all-optical calculations and neural networks[J]. Advanced Photonics, 2022, 4(6): 064002 Copy Citation Text show less
    References

    [1] H. J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat. Photonics, 4, 261-263(2010).

    [2] E. Pelucchi et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194-208(2022).

    [3] Z. Ying et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun., 11, 2154(2020).

    [4] Samsung begins chip production using 3 nm process technology with GAA architecture.

    [5] L. Li et al. Intelligent metasurfaces: control, communication and computing. eLight, 2, 7(2022).

    [6] F. Zangeneh-Nejad et al. Analogue computing with metamaterials. Nat. Rev. Mater., 6, 207-225(2021).

    [7] S. He, R. Wang, H. Luo. Computing metasurfaces for all-optical image processing: a brief review. Nanophotonics, 11, 1083-1108(2022).

    [8] L. Wesemann, T. J. Davis, A. Roberts. Meta-optical and thin film devices for all-optical information processing. Appl. Phys. Rev., 8, 031309(2021).

    [9] S. Abdollahramezani, O. Hemmatyar, A. Adibi. Meta-optics for spatial optical analog computing. Nanophotonics, 9, 4075-4095(2020).

    [10] L. L. Doskolovich et al. Spatial differentiation of Bloch surface wave beams using an on-chip phase-shifted Bragg grating. J. Opt., 18, 115006(2016).

    [11] D. A. Bykov et al. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt. Express, 22, 25084-25092(2014).

    [12] Z. Ruan. Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 40, 601-604(2015).

    [13] A. Silva et al. Performing mathematical operations with metamaterials. Science, 343, 160-163(2014).

    [14] I. Kim et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [15] J. Park et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [16] T. Cao et al. Tuneable thermal emission using chalcogenide metasurface. Adv. Opt. Mater., 6, 1800169(2018).

    [17] B. Muminov, L. T. Vuong. Fourier optical preprocessing in lieu of deep learning. Optica, 7, 1079-1088(2020).

    [18] H. Kwon et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 121, 173004(2018).

    [19] P. Viola, M. J. Jones. Robust real-time face detection. Int. J. Comput. Vision, 57, 137-154(2004).

    [20] S. J. Kim et al. Reconfigurable, vivid reflective colors based on solution-processed Fabry–Perot absorber using thermochromic vanadium dioxide. Appl. Surf. Sci., 565, 150610(2021).

    [21] B. Ko et al. Multilevel absorbers via the integration of undoped and tungsten-doped multilayered vanadium dioxide thin films. ACS Appl. Mater. Interfaces, 14, 1404-1412(2022).

    [22] A. Lalbakhsh, M. U. Afzal, K. P. Esselle. Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Antennas Wireless Propag. Lett., 16, 912-915(2017).

    [23] T. Zhu et al. Plasmonic computing of spatial differentiation. Nat. Commun., 8, 15391(2017).

    [24] L. Wesemann et al. Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing. APL Photonics, 4, 100801(2019).

    [25] T. Zhu et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl., 11, 034043(2019).

    [26] A. Youssefi et al. Analog computing by Brewster effect. Opt. Lett., 41, 3467-3470(2016).

    [27] D. Xu et al. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett., 45, 6867-6870(2020).

    [28] T. Zhu et al. Topological optical differentiator. Nat. Commun., 12, 680(2021).

    [29] M. Kim et al. Generalized analytic formula for spin Hall effect of light: shift enhancement and interface independence. Nanophotonics, 11, 2803-2809(2022).

    [30] M. Kim, D. Lee, J. Rho. Spin Hall effect under arbitrarily polarized or unpolarized light. Laser Photonics Rev., 15, 2100138(2021).

    [31] M. Kim et al. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat. Commun., 13, 2036(2022).

    [32] J. Huang, T. Zhu, Z. Ruan. Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator. Phys. Rev. Appl., 14, 054040(2022).

    [33] T. Zhu, J. Huang, Z. Ruan. Optical phase mining by adjustable spatial differentiator. Adv. Photonics, 2, 016001(2020).

    [34] C. Mi et al. Tunable optical spatial differentiation in the photonic spin Hall effect. Opt. Express, 28, 30222-30232(2020).

    [35] W. Xue, O. D. Miller. High-NA optical edge detection via optimized multilayer films. J. Opt., 23, 125004(2021).

    [36] F. Zangeneh-Nejad, A. Khavasi. Spatial integration by a dielectric slab and its planar graphene-based counterpart. Opt. Lett., 42, 1954-1957(2017).

    [37] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Analog computing using reflective plasmonic metasurfaces. Nano Lett., 15, 791-797(2015).

    [38] Y. Hwang et al. Plasmonic circuit for second-order spatial differentiation at the subwavelength scale. Opt. Express, 26, 7368(2018).

    [39] Z. Wang et al. Single-layer spatial analog meta-processor for imaging processing. Nat. Commun., 13, 2188(2022).

    [40] L. Bao et al. Mathematical operations of transmissive near fields controlled by metasurface with phase and amplitude modulations. Ann. Phys., 532, 2000069(2020).

    [41] J. Zhou et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. U. S. A., 116, 11137-11140(2019).

    [42] H. Wang et al. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics, 7, 338-343(2020).

    [43] M. K. Chen et al. Edge detection with meta-lens: from one dimension to three dimensions. Nanophotonics, 10, 3709-3715(2021).

    [44] A. Cordaro et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett., 19, 8418-8423(2019).

    [45] D. A. Bykov et al. First-order optical spatial differentiator based on a guided-mode resonant grating. Opt. Express, 26, 10997(2018).

    [46] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316-323(2020).

    [47] A. Komar et al. Edge detection with Mie-resonant dielectric metasurfaces. ACS Photonics, 8, 864-871(2021).

    [48] W. Fu et al. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 11, 62(2022).

    [49] C. Guo et al. Photonic crystal slab Laplace operator for image differentiation. Optica, 5, 251-256(2018).

    [50] S. Abdollahramezani et al. Dielectric metasurfaces solve differential and integro-differential equations. Opt. Lett., 42, 1197-1200(2017).

    [51] M. Farmahini-Farahani, J. Cheng, H. Mosallaei. Metasurfaces nanoantennas for light processing. J. Opt. Soc. Am. B, 30, 2365-2370(2013).

    [52] A. Chizari et al. Analog optical computing based on a dielectric meta-reflect array. Opt. Lett., 41, 3451-3454(2016).

    [53] L. Wan et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt. Lett., 45, 2070-2073(2020).

    [54] H. Kwon et al. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics, 7, 1799-1805(2020).

    [55] O. Y. Long et al. Polarization-independent isotropic nonlocal metasurfaces with wavelength-controlled functionality. Phys. Rev. Appl., 17, 024029(2022).

    [56] A. C. Overvig et al. Selection rules for quasibound states in the continuum. Phys. Rev. B, 102, 035434(2020).

    [57] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [58] S. Joseph et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics, 10, 4175-4207(2021).

    [59] X. Zhang et al. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [60] A. Kodigala et al. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [61] D. Pan et al. Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photonics Res., 9, 1758-1766(2021).

    [62] J. Kühne et al. Fabrication robustness in BIC metasurfaces. Nanophotonics, 10, 4305-4312(2021).

    [63] H. Goh, A. Alù. Nonlocal scatterer for compact wave-based analog computing. Phys. Rev. Lett., 128, 073201(2022).

    [64] M. Camacho, B. Edwards, N. Engheta. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun., 12, 1466(2021).

    [65] D. Xu et al. Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl. Phys. Lett., 120, 241101(2022).

    [66] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333-1338(2019).

    [67] P. Georgi et al. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [68] J. Jang, T. Badloe, J. Rho. Unlocking the future of optical security with metasurfaces. Light Sci. Appl., 10, 144(2021).

    [69] O. Avayu et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [70] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [71] B. O. Raeker et al. All-dielectric meta-optics for high-efficiency independent amplitude and phase manipulation. Adv. Photonics Res., 3, 2100285(2022).

    [72] E. Maguid et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl., 6, e17027(2017).

    [73] K. Du et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).

    [74] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [75] A. H. Dorrah et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [76] Y. Zhou et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl., 8, 80(2019).

    [77] S. M. Kamali et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X, 7, 041056(2017).

    [78] T. Badloe et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv. Photonics Res., 2, 2000205(2021).

    [79] T. Badloe et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl., 11, 118(2022).

    [80] T. Badloe et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 8, 2102646(2021).

    [81] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [82] I. Kim et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv., 7, eabe9943(2021).

    [83] J. H. Ko et al. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film. Adv. Funct. Mater., 30, 1908592(2020).

    [84] T. Badloe, I. Kim, J. Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Sci. Rep., 10, 4522(2020).

    [85] C. Zhang et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano, 14, 1418-1426(2020).

    [86] A. She et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv., 4, eaap9957(2018).

    [87] P. Huo et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791-2798(2020).

    [88] X. Zhang et al. Reconfigurable metasurface for image processing. Nano Lett., 21, 8715-8722(2021).

    [89] Y. Kim et al. Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 32, 2106050(2022).

    [90] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [91] C. Choi et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv. Funct. Mater., 31, 2007210(2021).

    [92] Y. Qu et al. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl., 7, 26(2018).

    [93] H. Yang et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface. Opt. Lett., 46, 3741-3744(2021).

    [94] D. C. Tzarouchis et al. Mathematical operations and equation solving with reconfigurable metadevices. Light Sci. Appl., 11, 263(2022).

    [95] T. Badloe, I. Kim, J. Rho. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Phys. Chem. Chem. Phys., 22, 2337-2342(2020).

    [96] S. So, J. Rho. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics, 8, 1255-1261(2019).

    [97] S. So et al. Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Opt. Mater. Express, 11, 1863-1873(2021).

    [98] Z. Liu et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater., 32, 1904790(2020).

    [99] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [100] H. Ren et al. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv., 6, eaaz4261(2020).

    [101] H. Zhou et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).

    [102] W. Zhu et al. Design and experimental verification for optical module of optical vector-matrix multiplier. Appl. Opt., 52, 4412-4418(2013).

    [103] J. Cheng, H. Zhou, J. Dong. Photonic matrix computing: from fundamentals to applications. Nanomaterials, 11, 1683(2021).

    [104] W. Bogaerts, L. Chrostowski. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev., 12, 1700237(2018).

    [105] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [106] Z. Wang et al. Metasurface on integrated photonic platform: from mode converters to machine learning. Nanophotonics, 11, 3531-3546(2022).

    [107] M. K. Chen et al. Artificial intelligence in meta-optics. Chem. Rev., 122, 15356-15413(2022).

    [108] C. Qian et al. Performing optical logic operations by a diffractive neural network. Light Sci. Appl., 9, 59(2020).

    [109] J. Liu et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX, 2, 5(2021).

    [110] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [111] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [112] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [113] S. So et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [114] J. Jiang, M. Chen, J. A. Fan. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater., 6, 679-700(2021).

    [115] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [116] N. Wang et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2, 22(2021).

    [117] C. M. Bishop. Pattern Recognition and Machine Learning(2006).

    [118] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [119] X. Luo et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl., 11, 158(2022).

    [120] J. W. Goodman. Introduction to Fourier Optics(2004).

    [121] S. Zarei, A. Khavasi. Realization of optical logic gates using on-chip diffractive optical neural networks. Sci. Rep., 12, 15747(2022).

    [122] M. Papaioannou, E. Plum, N. I. Zheludev. All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics, 4, 217-222(2017).

    [123] M. Papaioannou et al. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl., 5, e16070(2016).

    [124] G. Qu et al. All-dielectric metasurface empowered optical-electronic hybrid neural networks. Laser Photonics Rev., 16, 2100732(2022).

    [125] Z. Huang et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys. Rev. Appl., 15, 014037(2021).

    [126] J. Zhang et al. Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes. Opt. Express, 30, 26728-26741(2022).

    [127] J. Weng et al. Meta-neural-network for real-time and passive deep-learning-based object recognition. Nat. Commun., 11, 6309(2020).

    [128] Q. Wei et al. Rotational multiplexing method based on cascaded metasurface holography. Adv. Opt. Mater., 10, 2102166(2022).

    [129] W. Feng et al. RGB achromatic metalens doublet for digital imaging. Nano Lett., 22, 3969-3975(2022).

    [130] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [131] L. Li et al. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [132] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022).

    [133] L. Li et al. Intelligent metasurface imager and recognizer. Light Sci. Appl., 8, 97(2019).

    [134] Z. Gu et al. High-resolution programmable metasurface imager based on multilayer perceptron network. Adv. Opt. Mater., 10, 2200619(2022).

    [135] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [136] T. W. Hughes et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864(2018).

    [137] Y. L. Xiao et al. Optical random phase dropout in a diffractive deep neural network. Opt. Lett., 46, 5260(2021).

    [138] H. Dou et al. Residual D 2 NN: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett., 45, 2688(2020).

    [139] J. Bueno et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756(2018).

    [140] T. W. Hughes et al. Wave physics as an analog recurrent neural network. Sci. Adv., 5, eaay6946(2019).

    [141] H. Wei et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [142] T. Wang et al. Image sensing with multilayer, nonlinear optical neural networks(2022).

    [143] A. Ryou et al. Free-space optical neural network based on thermal atomic nonlinearity. Photonics Res., 9, B128-B134(2021).

    [144] S. R. Skinner, J. E. Steck, E. C. Behrman. Optical neural network using Kerr-type nonlinear materials. Proc. Fourth Int. Conf. Microelectron. for Neural Networks and Fuzzy Syst., 12-15(1994).

    [145] M. Miscuglio et al. All-optical nonlinear activation function for photonic neural networks. Opt. Mater. Express, 8, 3851(2018).

    [146] M. Nauman et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun., 12, 5597(2021).

    [147] L. Carletti et al. Reconfigurable nonlinear response of dielectric and semiconductor metasurfaces. Nanophotonics, 10, 4209-4221(2021).

    [148] S. Rubin, Y. Fainman. Nonlinear, tunable, and active optical metasurface with liquid film. Adv. Photonics, 4, 066003(2019).

    [149] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8-21(2018).

    [150] A. E. Minovich et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev., 9, 195-213(2015).

    [151] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [152] S. Chen et al. Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics, 7, 1013-1024(2018).

    [153] Y. Zuo et al. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [154] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [155] B. Ko, T. Badloe, J. Rho. Vanadium dioxide for dynamically tunable photonics. ChemNanoMat., 7, 713-727(2021).

    [156] R. E. Simpson, J. K. W. Yang, J. Hu. Are phase change materials ideal for programmable photonics?: opinion. Opt. Mater. Express, 12, 2368-2373(2022).

    [157] T. Y. Teo et al. Programmable chalcogenide-based all-optical deep neural networks. Nanophotonics, 11, 4073-4088(2022).

    [158] LiDAR drives forwards. Nat. Photonics, 12, 441(2018).

    [159] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [160] I. A. D. Williamson et al. Tunable nonlinear activation functions for optical neural networks, SM1E.2(2020).

    [161] D. Mengu et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 1-14(2020).

    [162] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [163] A. H. Atabaki. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [164] W. Liu et al. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 10, 190-195(2016).

    [165] C. Jung et al. Metasurface-driven optically variable devices. Chem. Rev., 121, 13013-13050(2021).

    [166] P.R. Wiecha et al. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237-244(2019).

    [167] Z. Li et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl., 7, 63(2018).

    [168] S. Q. Li et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [169] J. Liu et al. Intrinsic optical spatial differentiation enabled quantum dark-field microscopy. Phys. Rev. Lett., 128, 193601(2022).

    [170] R. Wang et al. Computing metasurfaces enabled chiral edge image sensing. iScience, 25, 104532(2022).

    [171] L. Wesemann et al. Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl., 10, 98(2021).

    [172] K. Toda et al. Molecular contrast on phase-contrast microscope. Sci. Rep., 9, 9957(2019).

    [173] O. Kulce et al. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl., 10, 25(2021).

    [174] S. Zhang et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, 10, 259-293(2020).

    [175] D. Mengu, A. Ozcan. All-optical phase recovery: diffractive computing for quantitative phase imaging. Adv. Opt. Mater., 10, 2200281(2022).

    [176] H. Kwon et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 14, 109-114(2020).

    [177] Y. Yang et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv. Mater., 33, 2005893(2021).

    [178] J. Kim et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano, 16, 3546-3553(2022).

    [179] M. Wang et al. Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nat. Commun., 11, 5055(2020).

    [180] K. Kim et al. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces, 11, 26109-26115(2019).

    [181] G. Yoon et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [182] D. K. Oh et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron., 14, 229-251(2021).

    [183] G. Yoon et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [184] J. Kim et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev., 16, 2200098(2022).

    [185] B. Ko et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun., 13, 6256(2022).

    [186] W. Zhang et al. 2.5D, 3D and 4D printing in nanophotonics—a progress report. Mater Today Proc., 70, 304-309(2022).

    [187] J. Kim et al. Scalably manufactured high-index atomic layer-polymer hybrid metasurfaces for high-efficiency virtual reality metaoptics in the visible(2022).

    [188] C. Chen et al. Large-area, low-cost near-infrared meta-surface reflector based on a pixelated two-dimensional silicon disk array. Opt. Express, 28, 38355-38365(2020).

    [189] H. Zheng et al. Large-scale metasurfaces based on grayscale nanosphere lithography. ACS Photonics, 8, 1824-1831(2021).

    [190] S. Kim et al. Self-assembled pagoda-like nanostructure-induced vertically stacked split-ring resonators for polarization-sensitive dichroic responses. Nano Converg., 9, 40(2022).

    [191] G. A. Ozin et al. Nanofabrication by self-assembly. Mater. Today, 12, 12-23(2009).

    [192] J. Zhou et al. Nonlinear computational edge detection metalens. Adv. Funct. Mater., 32, 2204734(2022).

    [193] J. Sol, D. R. Smith, P. del Hougne. Meta-programmable analog differentiator. Nat. Commun., 13, 1713(2022).

    [194] H. Rajabalipanah et al. Analog signal processing through space-time digital metasurfaces. Nanophotonics, 10, 1753-1764(2021).

    [195] L. Chen et al. Touch-programmable metasurface for various electromagnetic manipulations and encryptions. Small, 18, 2203871(2022).

    [196] A. Momeni, K. Rouhi, R. Fleury. Switchable and simultaneous spatiotemporal analog computing with computational graphene-based multilayers. Carbon, 186, 599-611(2022).

    [197] J. Huang et al. Spatiotemporal differentiators generating optical vortices with transverse orbital angular momentum and detecting sharp change of pulse envelope. Laser Photonics Rev., 16, 2100357(2022).

    [198] K. Chen et al. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry–Pérot semiconductor optical amplifiers. Opt. Express, 23, 3784-3794(2015).

    [199] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [200] J. C. Ke et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases. Light Sci. Appl., 11, 273(2022).

    [201] H. Li et al. Performing calculus with epsilon-near-zero metamaterials. Sci. Adv., 8, eabq6198(2022).

    Trevon Badloe, Seokho Lee, Junsuk Rho. Computation at the speed of light: metamaterials for all-optical calculations and neural networks[J]. Advanced Photonics, 2022, 4(6): 064002
    Download Citation