• Laser & Optoelectronics Progress
  • Vol. 59, Issue 8, 0800001 (2022)
Yifan Wang1、3, Yao Zheng1、3, Yue Zhu1、3, Xiaobin Xu2、3, Wei Gong2、3、*, and Ke Si1、2、3、**
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • 2School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • 3MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • show less
    DOI: 10.3788/LOP202259.0800001 Cite this Article Set citation alerts
    Yifan Wang, Yao Zheng, Yue Zhu, Xiaobin Xu, Wei Gong, Ke Si. Key Technologies and Progress of Precision Optogenetics[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0800001 Copy Citation Text show less
    References

    [1] Scanziani M, Häusser M. Electrophysiology in the age of light[J]. Nature, 461, 930-939(2009).

    [2] Miesenböck G, Kevrekidis I G. Optical imaging and control of genetically designated neurons in functioning circuits[J]. Annual Review of Neuroscience, 28, 533-563(2005).

    [3] Gradinaru V, Thompson K R, Zhang F et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo[J]. The Journal of Neuroscience, 27, 14231-14238(2007).

    [4] Yizhar O, Fenno L E, Davidson T J et al. Optogenetics in neural systems[J]. Neuron, 71, 9-34(2011).

    [5] Grienberger C, Konnerth A. Imaging calcium in neurons[J]. Neuron, 73, 862-885(2012).

    [6] Knöpfel T, Gallero-Salas Y, Song C. Genetically encoded voltage indicators for large scale cortical imaging come of age[J]. Current Opinion in Chemical Biology, 27, 75-83(2015).

    [7] Huang P Y, Song Y T, Zhang N et al. Optogenetics based on light-gated protein-protein interactions and its applications[J]. Chinese Journal of Lasers, 47, 0207010(2020).

    [8] Zemelman B V, Lee G A, Ng M et al. Selective photostimulation of genetically ChARGed neurons[J]. Neuron, 33, 15-22(2002).

    [9] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [10] Zhang F, Wang L P, Boyden E S et al. Channelrhodopsin-2 and optical control of excitable cells[J]. Nature Methods, 3, 785-792(2006).

    [11] Zhang F, Wang L P, Brauner M et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 446, 633-639(2007).

    [12] Su L C, Chen T. A wireless stimulation system with multiple channels and independent regulation for optogenetics in vitro[J]. Laser & Optoelectronics Progress, 58, 1917001(2021).

    [13] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143-S156(2007).

    [14] Adamantidis A R, Zhang F, Aravanis A M et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 450, 420-424(2007).

    [15] Huber D, Petreanu L, Ghitani N et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice[J]. Nature, 451, 61-64(2008).

    [16] Park S, Guo Y, Jia X et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [17] Ciocchi S, Herry C, Grenier F et al. Encoding of conditioned fear in central amygdala inhibitory circuits[J]. Nature, 468, 277-282(2010).

    [18] Domingos A I, Vaynshteyn J, Voss H U et al. Leptin regulates the reward value of nutrient[J]. Nature Neuroscience, 14, 1562-1568(2011).

    [19] Tsubota T, Ohashi Y, Tamura K et al. Optogenetic manipulation of cerebellar Purkinje cell activity in vivo[J]. PLoS One, 6, e22400(2011).

    [20] Gourine A V, Kasymov V, Marina N et al. Astrocytes control breathing through pH-dependent release of ATP[J]. Science, 329, 571-575(2010).

    [21] Pagliardini S, Janczewski W A, Tan W et al. Active expiration induced by excitation of ventral medulla in adult anesthetized rats[J]. The Journal of Neuroscience, 31, 2895-2905(2011).

    [22] Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 464, 1155-1160(2010).

    [23] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009).

    [24] Tye K M, Prakash R, Kim S Y et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety[J]. Nature, 471, 358-362(2011).

    [25] Lagali P S, Balya D, Awatramani G B et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration[J]. Nature Neuroscience, 11, 667-675(2008).

    [26] Tomita H, Sugano E, Isago H et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats[J]. Experimental Eye Research, 90, 429-436(2010).

    [27] Makhijani K, To T L, Ruiz-González R et al. Precision optogenetic tool for selective single-and multiple-cell ablation in a live animal model system[J]. Cell Chemical Biology, 24, 110-119(2017).

    [28] Shemesh O A, Tanese D, Zampini V et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 20, 1796-1806(2017).

    [29] Yang W J, Carrillo-Reid L, Bando Y et al. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions[J]. eLife, 7, e32671(2018).

    [30] Xie C, Meyer R, Froehly L et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J]. Light: Science & Applications, 10, 126(2021).

    [31] Ruan H, Brake J, Robinson J E et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).

    [32] Rumi M, Perry J W. Two-photon absorption: an overview of measurements and principles[J]. Advances in Optics and Photonics, 2, 451(2010).

    [33] Gewin V. A golden age of brain exploration[J]. PLoS Biology, 3, e24(2005).

    [34] Jacques S L. Corrigendum: optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, 5007-5008(2013).

    [35] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [36] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).

    [37] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).

    [38] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).

    [39] di Leonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers[J]. Optics Express, 19, 247-254(2010).

    [40] Luo Y Q, Yan S X, Li H H et al. Focusing light through scattering media by reinforced hybrid algorithms[J]. APL Photonics, 5, 016109(2020).

    [41] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [42] Cui M, McDowell E J, Yang C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear[J]. Optics Express, 18, 25-30(2010).

    [43] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).

    [44] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [45] Lai P X, Xu X, Liu H L et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 16, 080505(2011).

    [46] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).

    [47] Suzuki Y, Tay J W, Yang Q et al. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 39, 3441-3444(2014).

    [48] Judkewitz B, Wang Y M, Horstmeyer R et al. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 7, 300-305(2013).

    [49] Zhou E H, Ruan H, Yang C et al. Focusing on moving targets through scattering samples[J]. Optica, 1, 227-232(2014).

    [50] Ma C, Xu X, Liu Y et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 8, 931-936(2014).

    [51] Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 7, 141-147(2010).

    [52] Yang H Z, Li X Y. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 43, 630-635(2011).

    [53] Wang K, Milkie D E, Saxena A et al. Rapid adaptive optical recovery of optimal resolution over large volumes[J]. Nature Methods, 11, 625-628(2014).

    [54] Liu R, Li Z, Marvin J S et al. Direct wavefront sensing enables functional imaging of infragranular axons and spines[J]. Nature Methods, 16, 615-618(2019).

    [55] Tao X, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [56] Qin Z Y, Chen C P, He S C et al. Adaptive optics two-photon endomicroscopy enables deep brain imaging at synaptic resolution over large volumes[J]. Science advances, 6, eabc6521(2020).

    [57] Li Z, Zhang Q, Chou S W et al. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo[J]. Science Advances, 6, eaaz3870(2020).

    [58] Albert O, Sherman L, Mourou G et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 25, 52-54(2000).

    [59] Sherman L, Ye J Y, Albert O et al. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror[J]. Journal of Microscopy, 206, 65-71(2002).

    [60] Marsh P, Burns D, Girkin J. Practical implementation of adaptive optics in multiphoton microscopy[J]. Optics Express, 11, 1123-1130(2003).

    [61] Wright A J, Burns D, Patterson B A et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy[J]. Microscopy Research and Technique, 67, 36-44(2005).

    [62] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [63] Jin Y C, Zhang Y Y, Hu L J et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 26, 30162-30171(2018).

    [64] Saha D, Schmidt U, Zhang Q et al. Practical sensorless aberration estimation for 3D microscopy with deep learning[J]. Optics Express, 28, 29044-29053(2020).

    [65] Guo H, Korablinova N, Ren Q S et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 14, 6456-6462(2006).

    [66] Barwick S. Detecting higher-order wavefront errors with an astigmatic hybrid wavefront sensor[J]. Optics Letters, 34, 1690-1692(2009).

    [67] Li Z Q, Li X Y. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks[J]. Optics Express, 26, 31675-31692(2018).

    [68] Hu L, Hu S, Gong W et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection[J]. Optics Express, 27, 33504-33517(2019).

    [69] Hu L, Hu S, Gong W et al. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 45, 3741-3744(2020).

    [70] Reutsky-Gefen I, Golan L, Farah N et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration[J]. Nature Communications, 4, 1509(2013).

    [71] Szabo V, Ventalon C, de Sars V et al. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope[J]. Neuron, 84, 1157-1169(2014).

    [72] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [73] Kong L J, Jin C, Jin G F. Advances on in vivo high-spatial-resolution neural manipulation based on optogenetics[J]. Chinese Journal of Lasers, 48, 1507003(2021).

    [74] Packer A M, Russell L E, Dalgleish H W et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo[J]. Nature Methods, 12, 140-146(2015).

    [75] Packer A M, Peterka D S, Hirtz J J et al. Two-photon optogenetics of dendritic spines and neural circuits[J]. Nature Methods, 9, 1202-1205(2012).

    [76] Prakash R, Yizhar O, Grewe B et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation[J]. Nature Methods, 9, 1171-1179(2012).

    [77] Papagiakoumou E, Anselmi F, Bègue A et al. Scanless two-photon excitation of channelrhodopsin-2[J]. Nature Methods, 7, 848-854(2010).

    [78] Zahid M, Vélez-Fort M, Papagiakoumou E et al. Holographic photolysis for multiple cell stimulation in mouse hippocampal slices[J]. PLoS One, 5, e9431(2010).

    [79] Gill J V, Lerman G M, Zhao H et al. Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection[J]. Neuron, 108, 382-393(2020).

    [80] Mainen Z F, Maletic-Savatic M, Shi S H et al. Two-photon imaging in living brain slices[J]. Methods, 18, 231-239(1999).

    [81] Oheim M, Beaurepaire E, Chaigneau E et al. Two-photon microscopy in brain tissue: parameters influencing the imaging depth[J]. Journal of Neuroscience Methods, 111, 29-37(2001).

    [82] Rickgauer J P, Tank D W. Two-photon excitation of channelrhodopsin-2 at saturation[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 15025-15030(2009).

    [83] Go M A, Mueller M, Castañares M L et al. A compact holographic projector module for high-resolution 3D multi-site two-photon photostimulation[J]. PLoS One, 14, e0210564(2019).

    [84] Nadella K M, Roš H, Baragli C et al. Random-access scanning microscopy for 3D imaging in awake behaving animals[J]. Nature Methods, 13, 1001-1004(2016).

    [85] Szalay G, Judák L, Katona G et al. Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals[J]. Neuron, 92, 723-738(2016).

    [86] Carrillo-Reid L, Yang W, Bando Y et al. Imprinting and recalling cortical ensembles[J]. Science, 353, 691-694(2016).

    [87] Jennings J H, Kim C K, Marshel J H et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour[J]. Nature, 565, 645-649(2019).

    [88] Wang S, Szobota S, Wang Y et al. All optical interface for parallel, remote, and spatiotemporal control of neuronal activity[J]. Nano Letters, 7, 3859-3863(2007).

    [89] Grossman N, Poher V, Grubb M S et al. Multi-site optical excitation using ChR2 and micro-LED array[J]. Journal of Neural Engineering, 7, 16004(2010).

    [90] Münch T A, da Silveira R A, Siegert S et al. Approach sensitivity in the retina processed by a multifunctional neural circuit[J]. Nature Neuroscience, 12, 1308-1316(2009).

    [91] Bègue A, Papagiakoumou E, Leshem B et al. Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation[J]. Biomedical Optics Express, 4, 2869-2879(2013).

    [92] Hernandez O, Papagiakoumou E, Tanese D et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, 7, 11928(2016).

    [93] Chen I W, Ronzitti E, Lee B R et al. In vivo submillisecond two-photon optogenetics with temporally focused patterned light[J]. The Journal of Neuroscience, 39, 3484-3497(2019).

    [94] Accanto N, Molinier C, Tanese D et al. Multiplexed temporally focused light shaping for high-resolution multi-cell targeting[J]. Optica, 5, 1478-1491(2018).

    [95] Rickgauer J P, Deisseroth K, Tank D W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields[J]. Nature Neuroscience, 17, 1816-1824(2014).

    [96] Pégard N C, Mardinly A R, Oldenburg I A et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT)[J]. Nature Communications, 8, 1228(2017).

    [97] Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms[J]. Optics Communications, 185, 77-82(2000).

    [98] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [99] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [100] Papagiakoumou E, de Sars V, Oron D et al. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses[J]. Optics Express, 16, 22039(2008).

    [101] Dufour S, de Koninck Y. Optrodes for combined optogenetics and electrophysiology in live animals[J]. Neurophotonics, 2, 031205(2015).

    [102] Mattis J, Tye K M, Ferenczi E A et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins[J]. Nature Methods, 9, 159-172(2011).

    [103] Inoue M, Takeuchi A, Horigane S et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2[J]. Nature Methods, 12, 64-70(2015).

    [104] Dana H, Novak O, Guardado-Montesino M et al. Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo[J]. PLoS One, 13, e0205444(2018).

    [105] Bethge P, Carta S, Lorenzo D A et al. An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator[J]. PLoS One, 12, e0179460(2017).

    [106] Guo Z V, Hart A C, Ramanathan S. Optical interrogation of neural circuits in Caenorhabditis elegans[J]. Nature Methods, 6, 891-896(2009).

    [107] dal Maschio M, Donovan J C, Helmbrecht T O et al. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging[J]. Neuron, 94, 774-789(2017).

    [108] Marshel J H, Kim Y S, Machado T A et al. Cortical layer-specific critical dynamics triggering perception[J]. Science, 365, aaw5202(2019).

    [109] Farah N, Levinsky A, Brosh I et al. Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks[J]. Neurophotonics, 2, 045002(2015).

    [110] Kampasi K, English D F, Seymour J et al. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes[J]. Microsystems & Nanoengineering, 4, 10(2018).

    [111] Kampasi K, Stark E, Seymour J et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis[J]. Scientific Reports, 6, 30961(2016).

    [112] Pisanello F, Sileo L, Oldenburg I A et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics[J]. Neuron, 82, 1245-1254(2014).

    [113] Nikolenko V, Fino E, Yuste R. Two-photon mapping of neural circuits[J]. Cold Spring Harbor Protocols, 2011, 111(2011).

    [114] Ward M P, Rajdev P, Ellison C et al. Toward a comparison of microelectrodes for acute and chronic recordings[J]. Brain Research, 1282, 183-200(2009).

    [115] Baker C A, Elyada Y M, Parra A et al. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin[J]. eLife, 5, e14193(2016).

    [116] Trimmer J S. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity[J]. Neuron, 85, 238-256(2015).

    [117] Andersen P, Moser E I. Brain temperature and hippocampal function[J]. Hippocampus, 5, 491-498(1995).

    [118] Desai M, Kahn I, Knoblich U et al. Mapping brain networks in awake mice using combined optical neural control and fMRI[J]. Journal of Neurophysiology, 105, 1393-1405(2011).

    [119] Picot A, Dominguez S, Liu C et al. Temperature rise under two-photon optogenetic brain stimulation[J]. Cell Reports, 24, 1243-1253(2018).

    [120] McAlinden N, Massoubre D, Richardson E et al. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation[J]. Optics Letters, 38, 992-994(2013).

    [121] Cheng P, Tian X, Tang W et al. Direct control of store-operated calcium channels by ultrafast laser[J]. Cell Research, 31, 758-772(2021).

    Yifan Wang, Yao Zheng, Yue Zhu, Xiaobin Xu, Wei Gong, Ke Si. Key Technologies and Progress of Precision Optogenetics[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0800001
    Download Citation