• Journal of Semiconductors
  • Vol. 43, Issue 12, 122001 (2022)
Van Nang Lam1、*, Thi Bich Vu2、3, Quang Dat Do1, Thi Thanh Xuan Le1, Tien Dai Nguyen2、3、**, T.-Thanh-Bao Nguyen4, Hoang Tung Do4, and Thi Tu Oanh Nguyen5
Author Affiliations
  • 1Department of Natural Sciences, Hoa Lu University, Ninh Nhat, Ninh Binh City, Viet Nam
  • 2Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000, Viet Nam
  • 3Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
  • 4Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
  • 5Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
  • show less
    DOI: 10.1088/1674-4926/43/12/122001 Cite this Article
    Van Nang Lam, Thi Bich Vu, Quang Dat Do, Thi Thanh Xuan Le, Tien Dai Nguyen, T.-Thanh-Bao Nguyen, Hoang Tung Do, Thi Tu Oanh Nguyen. One-step hydrothermal synthesis of Sn-dopedα-Fe2O3 nanoparticles for enhanced photocatalytic degradation of Congo red[J]. Journal of Semiconductors, 2022, 43(12): 122001 Copy Citation Text show less
    References

    [1] Y J Zhang, L Kang, L C Liu. Alkali-activated cements for photocatalytic degradation of organic dyes. In: Handbook of Alkali-Activated Cements, Mortars and Concretes. Amsterdam: Elsevier, 729(2015).

    [2] Y Q Zheng, B Cheng, J J Fan et al. Review on nickel-based adsorption materials for Congo red. J Hazard Mater, 403, 123559(2021).

    [3] A Waheed, M Mansha, I W Kazi et al. Synthesis of a novel 3, 5-diacrylamidobenzoic acid based hyper-cross-linked resin for the efficient adsorption of Congo Red and Rhodamine B. J Hazard Mater, 369, 528(2019).

    [4] C L Jiao, D Liu, N N Wei et al. Efficient Congo red removal using porous cellulose/gelatin/sepiolite gel beads: Assembly, characterization, and adsorption mechanism. Polymers, 13, 3890(2021).

    [5] D Olivo-Alanis, R B Garcia-Reyes, L H Alvarez et al. Mechanism of anaerobic bio-reduction of azo dye assisted with lawsone-immobilized activated carbon. J Hazard Mater, 347, 423(2018).

    [6] Y J Zhang, L C Liu, L L Ni et al. A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe 2O 3 catalyst for treatment of dye wastewater. Appl Catal B, 138/139, 9(2013).

    [7] J B Jr Souza, F L Souza, L Vayssieres et al. On the relevance of understanding and controlling the locations of dopants in hematite photoanodes for low-cost water splitting. Appl Phys Lett, 119, 200501(2021).

    [8] C E Bonancêa, Nascimento G M do, Souza M L de et al. Substrate development for surface-enhanced Raman study of photocatalytic degradation processes: Congo red over silver modified titanium dioxide films. Appl Catal B, 69, 34(2006).

    [9] C W Zhao, B Yang, J L Han et al. Preparation of carboxylic multiwalled-carbon-nanotube-modified poly(m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal. Appl Surf Sci, 453, 502(2018).

    [10] A K Dutta, S K Maji, B Adhikary. γ-Fe 2O 3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose Bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull, 49, 28(2014).

    [11] X Li, Y Liu, C L Zhang et al. Porous Fe 2O 3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J, 336, 241(2018).

    [12] S Q Guo, Z Z Hu, M M Zhen et al. Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. Appl Catal B, 264, 118506(2020).

    [13] S Suman, S Chahal et al. Understanding the role of Ni ions on the photocatalytic activity and dielectric properties of hematite nanostructures: An experimental and DFT approach. J Phys Chem Solids, 156, 110118(2021).

    [14] K Z Lv, J Li, X X Qing et al. Synthesis and photo-degradation application of WO 3/TiO 2 hollow spheres. J Hazard Mater, 189, 329(2011).

    [15] Y C Ling, G M Wang, D A Wheeler et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett, 11, 2119(2011).

    [16] M A Valenzuela, P Bosch, J Jiménez-Becerrill et al. Preparation, characterization and photocatalytic activity of ZnO, Fe 2O 3 and ZnFe 2O 4. J Photochem Photobiol A, 148, 177(2002).

    [17] D Ollis. Heterogeneous photoassisted catalysis: Conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes. J Catal, 88, 89(1984).

    [18] H Al-Ekabi, N Serpone, E Pelizzetti et al. Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir, 5, 250(1989).

    [19] T Sauer, Neto G Cesconeto, H J José et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO 2 slurry reactor. J Photochem Photobiol A, 149, 147(2002).

    [20] J S Jang, J Lee, H Ye et al. Rapid screening of effective dopants for Fe 2O 3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J Phys Chem C, 113, 6719(2009).

    [21] N M Mahmoodi. Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability. Environ Monit Assess, 186, 5595(2014).

    [22] R T Rasheed, S D Al-Algawi, H H Kareem et al. Preparation and characterization of hematite iron oxide (α-Fe 2O 3) by Sol-gel method. Chem Sci J, 9, 2(2018).

    [23] E L Tsege, T S Atabaev, M A Hossain et al. Cu-doped flower-like hematite nanostructures for efficient water splitting applications. J Phys Chem Solids, 98, 283(2016).

    [24] Q L Meng, Z B Wang, X Y Chai et al. Fabrication of hematite (α-Fe 2O 3) nanoparticles using electrochemical deposition. Appl Surf Sci, 368, 303(2016).

    [25] Z Q Cao, M L Qin, Y R Gu et al. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst. Mater Res Bull, 77, 41(2016).

    [26] N M Mahmoodi. Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water Air Soil Pollut, 224, 1612(2013).

    [27] M Oveisi, N M Mahmoodi, M A Asli. Facile and green synthesis of metal-organic framework/inorganic nanofiber using electrospinning for recyclable visible-light photocatalysis. J Clean Prod, 222, 669(2019).

    [28] M Alagiri, S B A Hamid. Sol-gel synthesis of α-Fe 2O 3 nanoparticles and its photocatalytic application. J Sol-Gel Sci Technol, 74, 783(2015).

    [29] D Sarkar, M Mandal, K Mandal. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl Mater Interfaces, 5, 11995(2013).

    [30] S K Maji, N Mukherjee, A Mondal et al. Synthesis, characterization and photocatalytic activity of α-Fe 2O 3 nanoparticles. Polyhedron, 33, 145(2012).

    [31] F Achouri, S Corbel, A Aboulaich et al. Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe 2O 3 heterostructures. J Phys Chem Solids, 75, 1081(2014).

    [32] Q Zheng, B Zhou, J Bai et al. Self-organized TiO 2 nanotube array sensor for the determination of chemical oxygen demand. Adv Mater, 20, 1044(2008).

    [33] K Sivula, R Zboril, F Le Formal et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc, 132, 7436(2010).

    [34] I Cesar, K Sivula, A Kay et al. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C, 113, 772(2009).

    [35] N J Cherepy, D B Liston, J A Lovejoy et al. Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe 2O 3 semiconductor nanoparticles. J Phys Chem B, 102, 770(1998).

    [36] M P Dare-Edwards, J B Goodenough, A Hamnett et al. Electrochemistry and photoelectrochemistry of iron(III) oxide. J Chem Soc, Faraday Trans 1, 79, 2027(1983).

    [37] M Gaudon, N Pailhé, J Majimel et al. Influence of Sn 4+ and Sn 4+/Mg 2+ doping on structural features and visible absorption properties of α-Fe 2O 3 hematite. J Solid State Chem, 183, 2101(2010).

    [38] S Krehula, G Štefanić, K Zadro et al. Synthesis and properties of iridium-doped hematite (α-Fe 2O 3). J Alloys Compd, 545, 200(2012).

    [39] Z L Ma, Z Y Wen, C P Gu et al. Doping of nonmetal Se in Fe 2O 3 nanowire array-based photoanodes for water oxidation. ACS Appl Nano Mater, 4, 13297(2021).

    [40] Y W Phuan, M N Chong, T Zhu et al. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method. Mater Res Bull, 69, 71(2015).

    [41] M Mohammadikish. Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe 2O 3 nanocrystals. Ceram Int, 40, 1351(2014).

    [42] R R Piticescu, A M Motoc, A I Tudor et al. Hydrothermal synthesis of nanostructured materials for energy harvesting applications. Int J Mater Chem Phys, 1, 31(2015).

    [43] J G Cai, S Y Chen, M Ji et al. Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment. CrystEngComm, 16, 1553(2014).

    [44] S Basavaraja, D S Balaji, M D Bedre et al. Solvothermal synthesis and characterization of acicular α-Fe 2O 3 nanoparticles. Bull Mater Sci, 34, 1313(2011).

    [45] G Li, M Y Liu, H Z Kou. Mesoporous α-Fe 2O 3 nanospheres: Structural evolution and investigation of magnetic properties. Chem Eur J, 17, 4323(2011).

    [46] N Popov, M Ristić, M Bošković et al. Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe 2O 3) nanoparticles. J Phys Chem Solids, 161, 110372(2022).

    [47] J Chao, H T Wang, B Xia et al. Metal acetylacetonate domains grown on H-terminated porous silicon at room temperature and their specific I-V behavior. J Phys Chem B, 110, 24565(2006).

    [48] X Liang, X Wang, J Zhuang et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater, 16, 1805(2006).

    [49] A M Jubb, H C Allen. Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces, 2, 2804(2010).

    [50] Y S Hu, A Kleiman-Shwarsctein, A J Forman et al. Pt-doped α-Fe 2O 3 thin films active for photoelectrochemical water splitting. Chem Mater, 20, 3803(2008).

    [51] H Mansour, R Bargougui, C Autret-Lambert et al. Co-precipitation synthesis and characterization of tin-doped α-Fe 2O 3 nanoparticles with enhanced photocatalytic activities. J Phys Chem Solids, 114, 1(2018).

    [52] J C Souza, R A P Ribeiro, L G da Trindade et al. Unconventional disorder by femtosecond laser irradiation in Fe 2O 3. ACS Omega, 6, 28049(2021).

    [53] L Q Chen, X F Yang, J Chen et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg Chem, 49, 8411(2010).

    [54] M Grätzel. Photoelectrochemical cells. Nature, 414, 338(2001).

    [55] T Luo, X H Hou, Q Liang et al. The influence of Manganese ions doping on nanosheet assembly NiFe 2O 4 for the removal of Congo red. J Alloys Compd, 763, 780(2018).

    [56] Y Ling, Y Li. Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting. Part Part Syst Charact, 31, 1113(2014).

    [57] S Em, M Yedigenov, L Khamkhash et al. Sn-doped hematite nanoparticles for potential photocatalytic dye degradation. IOP Conf Ser: Mater Sci Eng, 739, 012042(2020).

    [58] D D Qin, Y L Li, T Wang et al. Sn-doped hematite films as photoanodes for efficient photoelectrochemical water oxidation. J Mater Chem A, 3, 6751(2015).

    [59] H J Pan, D B Ao, G W Qin. Synergistic effects of dopant (Ti or Sn) and oxygen vacancy on the electronic properties of hematite: A DFT investigation. RSC Adv, 10, 23263(2020).

    [60] G Ravi, S Ravichandran, F Ameen et al. Sn doped α-Fe 2O 3 (Sn = 0, 10, 20, 30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew Energy, 133, 566(2018).

    [61] M Barroso, S R Pendlebury, A J Cowan et al. Charge carrier trapping, recombination and transfer in hematite (α-Fe 2O 3) water splitting photoanodes. Chem Sci, 4, 2724(2013).

    [62] N Iordanova, M Dupuis, K M Rosso. Charge transport in metal oxides: A theoretical study of hematite alpha-Fe 2O 3. J Chem Phys, 122, 144305(2005).

    [63] J A Glasscock, P R F Barnes, I C Plumb et al. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C, 111, 16477(2007).

    [64] S Y Zhang, H Hajiyani, A G Hufnagel et al. Sn-doped hematite for photoelectrochemical water splitting: The effect of Sn concentration. Z Phys Chem, 234, 683(2020).

    Van Nang Lam, Thi Bich Vu, Quang Dat Do, Thi Thanh Xuan Le, Tien Dai Nguyen, T.-Thanh-Bao Nguyen, Hoang Tung Do, Thi Tu Oanh Nguyen. One-step hydrothermal synthesis of Sn-dopedα-Fe2O3 nanoparticles for enhanced photocatalytic degradation of Congo red[J]. Journal of Semiconductors, 2022, 43(12): 122001
    Download Citation