• Journal of Semiconductors
  • Vol. 44, Issue 2, 020202 (2023)
Dongmei He1, Shirong Lu2, Juan Hou3、*, Cong Chen4、**, Jiangzhao Chen1、***, and Liming Ding5、****
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems (MoE), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • 2Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
  • 3Department of Physics, Shihezi University, Shihezi 832003, China
  • 4State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
  • 5Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/44/2/020202 Cite this Article
    Dongmei He, Shirong Lu, Juan Hou, Cong Chen, Jiangzhao Chen, Liming Ding. Doping organic hole-transport materials for high-performance perovskite solar cells[J]. Journal of Semiconductors, 2023, 44(2): 020202 Copy Citation Text show less
    References

    [1] National Renewable Energy Laboratory. Best Research Cell Efficiencies. 2022

    [2] T Zhang, F Wang, H B Kim et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 377, 495(2022).

    [3] Z Li, B Li, X Wu et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 376, 416(2022).

    [4] M Kim, J Jeong, H Lu et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375, 302(2022).

    [5] Q Jiang, J Tong, Y Xian et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 611, 278(2022).

    [6] Y Zhao, F Ma, Z Qu et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 377, 531(2022).

    [7] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381(2021).

    [8] A Al-Ashouri, E Köhnen, B Li et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 370, 1300(2020).

    [9] L Zhang, X Pan, L Liu et al. Star perovskite materials. J Semicond, 43, 030203(2022).

    [10] Z Fang, X Meng, C Zuo et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 64, 1743(2019).

    [11] Z Zhang, J Li, Z Fang et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 42, 030501(2021).

    [12] M Cheng, C Zuo, Y Wu et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 65, 1237(2020).

    [13] G Kim, H Min, K S Lee et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science, 370, 108(2020).

    [14] L Zhu, X Zhang, M Li et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv Energy Mater, 11, 2100529(2021).

    [15] M Li, H Li, Q Zhuang et al. Stabilizing perovskite precursor by synergy of functional groups for niox-based inverted solar cells with 23.5 % efficiency. Angew Chem Int Ed, 61, e202206914(2022).

    [16] T Wang, Y Zhang, W Kong et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science, 377, 1227(2022).

    [17] Z Li, C Xiao, Y Yang et al. Extrinsic ion migration in perovskite solar cells. Energ Environ Sci, 10, 1234(2017).

    [18] Y Wang, T Wu, J Barbaud et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 365, 687(2019).

    [19] E Bi, H Chen, F Xie et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun, 8, 15330(2017).

    [20] L Badia, E Mas-Marzá, R S Sánchez et al. New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability. APL Mater, 2, 081507(2014).

    [21] T M Koh, S Dharani, H Li et al. Cobalt dopant with deep redox potential for organometal halide hybrid solar cells. ChemSusChem, 7, 1909(2014).

    [22] J Zhang, Q Daniel, T Zhang et al. Chemical dopant engineering in hole transport layers for efficient perovskite solar cells: insight into the interfacial recombination. ACS Nano, 12, 10452(2018).

    [23] T Wu, R Zhuang, R Zhao et al. Understanding the effects of fluorine substitution in lithium salt on photovoltaic properties and stability of perovskite solar cells. ACS Energy Lett, 6, 2218(2021).

    [24] J Zhang, T Zhang, L Jiang et al. 4-tert-butylpyridine free hole transport materials for efficient perovskite solar cells: A new strategy to enhance the environmental and thermal stability. ACS Energy Lett, 3, 1677(2018).

    [25] L Calio, M Salado, S Kazim et al. A generic route of hydrophobic doping in hole transporting material to increase longevity of perovskite solar cells. Joule, 2, 1800(2018).

    [26] B Xu, J Huang, H Ågren et al. AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells. ChemSusChem, 7, 3252(2014).

    [27] J Y Seo, H S Kim, S Akin et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energ Environ Sci, 11, 2985(2018).

    [28] Y Saygili, H-S Kim, B Yang et al. Revealing the mechanism of doping of spiro-MeOTAD via Zn complexation in the absence of oxygen and light. ACS Energy Lett, 5, 1271(2020).

    [29] W H Nguyen, C D Bailie, E L Unger et al. Enhancing the hole-conductivity of spiro-ometad without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar Cells. J Am Chem Soc, 136, 10996(2014).

    [30] B Tan, S R Raga, A S R Chesman et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv Energy Mater, 9, 1901519(2019).

    [31] S Wang, Z Huang, X Wang et al. Unveiling the role of tBP–LiTFSI complexes in perovskite solar cells. J Am Chem Soc, 140, 16720(2018).

    [32] F Lamberti, T Gatti, E Cescon et al. Evidence of spiro-ometad de-doping by tert-butylpyridine additive in hole-transporting layers for perovskite solar cells. Chem, 5, 1806(2019).

    [33] J Luo, J Xia, H Yang et al. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energ Environ Sci, 11, 2035(2018).

    [34] J Xia, Y Zhang, C Xiao et al. Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells. Joule, 6, 1689(2022).

    Dongmei He, Shirong Lu, Juan Hou, Cong Chen, Jiangzhao Chen, Liming Ding. Doping organic hole-transport materials for high-performance perovskite solar cells[J]. Journal of Semiconductors, 2023, 44(2): 020202
    Download Citation