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Single-junction  and  tandem  perovskite  solar  cells  (PSCs)
have  achieved  impressive  power  conversion  efficiencies
(PCEs) of 25.7% and 31.3%, respectively, which makes it to be
one  of  next-generation  photovoltaic  technologies[1−9].  Inter-
face engineering[3, 5, 10−12], composition engineering[13] and ad-
ditive  engineering[7, 14, 15] have  made  remarkable  contribu-
tions  to  efficiency  enhancement.  Compared  with  efficiency,
the  long-term  operational  stability  of  PSCs  jogs  along,  which
is  far  from  the  requirements  of  commercialization.  Currently,
almost all regular n–i–p PSCs were accomplished with classic-
al  organic  hole-transport  materials  (HTMs),  i.e.,  PTAA[16] and
spiro-OMeTAD[2, 4, 6].  However,  the  highly  efficient  PSCs  with
the  above  organic  hole-transport  layers  (HTL)  usually  suffer
from instability. To facilitate hole transport and extraction, LiTF-
SI and tBP are frequently employed to dope organic HTLs but
this  would  sacrifice  device  stability.  The  use  of  these  hygro-
scopic p-dopants endows the devices with poor moisture sta-
bility.  It  is  worth  noting  that  small-sized  lithium  ion  (Li+)  can
easily diffuse into perovskite layer and metal electrode, which
deteriorates  device  performance[17].  Consequently,  a  critical
challenge  limiting  commercial  applications  of  PSCs  is  the
trade-off between high efficiency and high stability. The tradi-
tional  doping  strategy  with  LiTFSI  and  tBP  requires  a  long
time  (usually  several  days)  to  reach  optimal  doping  and
device  performance,  which  is  not  good  for  mass  production.
In  addition,  owing  to  the  intrinsic  soft  nature  of  perovskites,
iodide  ions  can  easily  migrate  and  diffuse  into  the  HTL[18, 19],
and  then  interact  with  positive  radicals  in  HTLs,  diminishing
hole transport[16].

In  order  to  mitigate  hygroscopic  problem  of  LiTFSI
dopant,  some p-type dopants  with better  hydrophobic  prop-
erty  (e.g.,  metal  organic  complex[20−22])  were  added  into  HTL
solution.  In  addition,  fluorine  substitution  in  lithium  salt  was
attempted  to  strengthen  the  moisture  stability  of  HTLs  and
device[23].  However,  the  above  methods  can  not  solve  thor-

oughly the instability issue induced by hygroscopic LiTFSI. Giv-
en  this,  a  variety  of  alternative  p-dopants  to  LiTFSI,  such  as
protic ionic liquids[24, 25], metal salts[26−28], and ex situ synthes-
ized  spiro-OMeTAD2·+(TFSI–)2 radicals[2, 29, 30],  have  been  ex-
plored. Nevertheless, to guarantee doping effect, tBP is imper-
ative  during  the  doping  process.  It  should  be  pointed  out
that  whether  tBP doping is  conducive to  ameliorating device
stability  is  still  debatable[31, 32].  By-products  can  be  formed
through the coordination between tBP and LiTFSI[31],  and the
generated  radicals  can  be  consumed via its  interaction  with
tBP[32]. The role of tBP in doping process needs further investig-
ation  to  address  the  instability  issue  of  classical  doping  re-
cipe.

Some  p-type  dopants  were  used  to  fully  supersede  tBP
and LiTFSI[33, 34]. Jia et al. doped PTAA HTL with a fluorine-con-
taining hydrophobic Lewis acid and achieved a higher PCE of
19.01% than 17.77% for control  devices doped by bi-dopants
LiTFSI/tBP[33]. Moreover, smaller hysteresis and improved stabil-
ity  were  demonstrated.  Recently,  Nazeeruddin et  al.  pro-
posed  a  novel  doping  approach  by  employing  DIC-PBA
dopant  with  a  diphenyl  iodide  cation  and  pentafluorophenyl
boric  acid  anion[34].  The  devices  gave  a  small-area  PCE  of
22.86% and a module PCE of 19.13% (33.2 cm2) along with in-
creased  ambient  stability.  DIC-PBA  can  simultaneously  p-
dope PTAA and perovskite, which was attributed to ionic inter-
action-derived  dipole  arrangement.  These  results  indicate
that  the  total  substitution  strategy  is  promising  but  the  PCE
needs  to  be  further  enhanced.  To  further  ameliorate  doping,
more  doping  molecules  should  be  designed.  The  correlation
between  molecular  structures  and  hole  conductivity,  energy
levels,  interfacial  carrier  dynamics  as  well  as  device  perform-
ance should be established.

Gao et  al. developed  an  ion-modulated  (IM)  radical  dop-
ing  strategy  where  pre-synthesized  organic  radicals  spiro-
OMeTAD2·+(TFSI–)2 and  TBMP+TFSI− salt  were  used  to  dope
spiro-OMeTAD HTL (Fig. 1(a))[2]. Spiro-OMeTAD can be immedi-
ately  oxidized  by  spiro-OMeTAD2·+(TFSI–)2 into  spiro-
OMeTAD·+TFSI– monoradical via comproportionation. The radic-
als  can  instantly  augment  the  conductivity  and  workfunction
(WF)  through  providing  hole  polarons.  In  the  meantime,  ion-
ic  salts  can  further  tune  WF via affecting  the  energetics  of
hole  polarons.  A  very  long  oxidation  time  (~24  h)  was  re-

  
Correspondence to: J Hou, hjuan05@shzu.edu.cn; C Chen,

chencong@hebut.edu.cn; J Z Chen, jiangzhaochen@cqu.edu.cn;
L M Ding, ding@nanoctr.cn

Received 16 DECEMBER 2022.

©2023 Chinese Institute of Electronics

RESEARCH HIGHLIGHTS

Journal of Semiconductors
(2023) 44, 020202

doi: 10.1088/1674-4926/44/2/020202

 

 
 

https://doi.org/10.1088/1674-4926/44/2/020202
mailto:hjuan05@shzu.edu.cn
mailto:chencong@hebut.edu.cn
mailto:jiangzhaochen@cqu.edu.cn
mailto:ding@nanoctr.cn


quired to reach optimal PCE for the devices with convention-
al  doping  recipe  (Fig.  1(b)).  In  comparison,  the  PCE  for  the
device  with  IM  radical  doping  instantly  reaches  maximum.
Through  IM  radical  doping,  FAPbI3 cells  offered  a  PCE  of
25.15%  (Fig.  1(c)).  Under  high  relative  humidity  of  ~70  ±  5%,
the  device  with  IM  radical  doping  showed  a T80 of  ~1240  h
while T80 was only ~96 h for the device with conventional dop-
ing  (Fig.  1(d)).  The  markedly  improved  thermal  stability  was
also realized as confirmed by much larger T80 value for the tar-
get  device  with  radical  doping  (~796  h)  as  compared  to  the
control device (~264 h) (Fig. 1(e)).  The generality for IM radic-
al  doping  was  revealed  by  comparing  the  photovoltaic  per-
formance of the devices based on different perovskite compos-
itions and various organic salts  with different cations and an-
ions.  Developing  alternative  dopant  recipe  could  improve
device performance.

I– can  easily  diffuse  into  HTL  and  react  with  positively
charged  radicals,  which  would  deteriorate  device  perform-
ance.  Besides,  Li+ ions  can  also  diffuse  into  perovskite  layer.
To  overcome these  issues,  Yang et  al.  reported a  Li-free  dop-
ing strategy by coupling positive polymer radicals with molecu-
lar anion 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (HF-
DF−) via an  ion  exchange  process[16].  The  molecular  struc-
tures for PTAA, F4TCNQ and LiHFDF are exhibited in Fig.  2(a).
The doping process can be completed in a few minutes.  And
the doping mechanism can be depicted as follows: 

PTAA + F4TCNQ → [PTAA⋅+F4TCNQ⋅−], (1)
  [PTAA⋅+F4TCNQ⋅−] + LiHFDF →[PTAA⋅+HFDF⋅−] + Li+ + F4TCNQ⋅−

. (2)

 

Fig. 1. (Color online) (a) Comparison between the conventional and ion-modulated (IM) radical doping strategies. (b) J–V characteristics for SnO2-
based PSCs (under different doping). (c) J–V curves for TiO2-based PSCs (conventional doping vs IM radical doping). (d) Moisture stability for unen-
capsulated PSCs under 70 ± 5% humidity (conventional doping vs IM radical doping). (e) Thermal stability for the unsealed devices at 70 ± 3 °C. Re-
produced with permission[2], Copyright 2022, American Association for the Advancement of Science.
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[PTAA·+F4TCNQ·−]  was  firstly  generated  by  the  reaction
between PTAA and F4TCNQ. Subsequently,  the ion exchange
between F4TCNQ·− in [PTAA·+F4TCNQ·−]  and HFDF− led to the
formation  of  a  complex  [PTAA·+HFDF·−]  (named  HFDF-HTL).
The doping efficiency  was  prominently  enhanced for  the  HF-
DF-HTL  compared  with  traditional  LiTFSI/tBP-doped  HTL  (Li-
HTL)  as  evidenced  by  80  times  greater  conductivity  of  the
former. HFDF-HTL can maintain high hole conductivity and ex-

cellent  energy  band  alignment  upon  extreme  iodide  inva-
sion.  The  ion  exchange  doping  strategy  enabled  the  fabrica-
tion of PSCs with a PCE of 24.0% (certified 23.9%), much high-
er  than  20.5%  for  the  device  with  Li-HTL  (Figs.  2(b)  and 2(c)).
The  unsealed  devices  were  evaluated  under  AM1.5G  radi-
ation  and  ambient  humidity  of  ~50%  (Fig.  2(d)).  The  device
with HFDF-HTL degraded by about 10% after aging for 576 h
while  the  device  with  Li-HTL  degraded  by  60%  after  only

 

Fig. 2. (Color online) (a) Molecular structures for PTAA, F4TCNQ and LiHFDF. (b) Cross-sectional SEM image for PSCs with HFDF-HTL. (c) J–V curves
for PSCs (Li-HTL vs HFDF-HTL). (d) Moisture stability for unsealed PSCs under AM1.5G radiation and ~50% RH (Li-HTL vs HFDF-HTL). (e) Thermal sta-
bility for the encapsulated devices with different HTLs under AM1.5G illumination at 85 °C. Reproduced with permission[16], Copyright 2022, Amer-
ican Association for the Advancement of Science.
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100 h. As shown in Fig. 2(e), 92% of the original PCE was main-
tained for the device with HFDF-HTL after 1000 h aging while
the device with Li-HTL exhibited a  49% drop in PCE.  The HTL
can  operate  stably  under  iodide  intrusion  through  develop-
ing effective doping strategy.

Most efforts  now focus on improving the hydrophobicity
of HTL by developing hydrophobic dopants to replace LiTFSI.
The  moisture  instability  is  easily  resolved  by  encapsulation
technology.  The  instability  caused  by  migration  and  diffu-
sion  of  Li+ (from  HTL  to  perovskite  layer)  and  I− (from  per-
ovskite layer to HTL) is more challenging. More effective dop-
ing strategy should be developed.
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