• Photonics Research
  • Vol. 5, Issue 2, 113 (2017)
Yong-Pan Gao1, Tie-Jun Wang1, Cong Cao2, and Chuan Wang1、*
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.1364/PRJ.5.000113 Cite this Article Set citation alerts
    Yong-Pan Gao, Tie-Jun Wang, Cong Cao, Chuan Wang. Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system[J]. Photonics Research, 2017, 5(2): 113 Copy Citation Text show less
    References

    [1] H. Raether. Surface Plasmons on Smooth Surfaces(1988).

    [2] M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, M. Kim. Quantum plasmonics. Nat. Phys., 9, 329-340(2013).

    [3] M. Luchansky, R. Bailey. High-Q optical sensors for chemical and biological analysis. Anal. Chem., 84, 793-821(2012).

    [4] A. Cetin, H. Altug. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano, 6, 9989-9995(2012).

    [5] . The Theory of Sound, 2(1896).

    [6] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys., 330, 377-445(1908).

    [7] P. Debye. Der lichtdruck auf kugeln von beliebigem material. Ann. Phys., 335, 57-136(1909).

    [8] I. Grudinin, V. Ilchenko, L. Maleki. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A, 74, 063806(2006).

    [9] M. Cai, O. Painter, K. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).

    [10] S. Spillane, T. Kippenberg, O. Painter, K. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett., 91, 043902(2003).

    [11] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett., 28, 272-274(2003).

    [12] J. Zhu, S. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2009).

    [13] P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [14] T. Kippenberg, K. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [15] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [16] X. F. Liu, F. C. Lei, M. Gao, X. Yang, G. Q. Qin, G. L. Long. Fabrication of a microtoroidal resonator with picometer precise resonant wavelength. Opt. Lett., 41, 3603-3606(2016).

    [17] B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 457, 455-458(2009).

    [18] A. Armani, R. Kulkarni, S. Fraser, R. Flagan, K. Vahala. Label-free, single-molecule detection with optical microcavities. Science, 317, 783-787(2007).

    [19] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [20] F. Vollmer, S. Arnold, D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 105, 20701-20704(2008).

    [21] X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, Y. F. Xiao. Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment. Adv. Mater., 26, 7462-7467(2014).

    [22] Ş. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 111, E3836-E3844(2014).

    [23] B. B. Li, W. Clements, X. C. Yu, K. Shi, Q. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [24] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [25] J. Swaim, J. Knittel, W. Bowen. Detection limits in whispering gallery biosensors with plasmonic enhancement. Appl. Phys. Lett., 99, 243109(2011).

    [26] E. Arbabi, S. Kamali, S. Arnold, L. Goddard. Hybrid whispering gallery mode/plasmonic chain ring resonators for biosensing. Appl. Phys. Lett., 105, 231107(2014).

    [27] H. Hunt, A. Armani. Label-free biological and chemical sensors. Nanoscale, 2, 1544-1559(2010).

    [28] J. Porto, F. Garcia-Vidal, J. Pendry. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett., 83, 2845-2848(1999).

    [29] H. Miyazaki, Y. Kurokawa. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett., 96, 097401(2006).

    [30] E. Verhagen, J. Dionne, L. Kuipers, H. Atwater, A. Polman. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Lett., 8, 2925-2929(2008).

    [31] J. D. Jackson. Classical Electrodynamics, 3(1988).

    [32] A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 9, 919-933(1973).

    [33] H. Haus, W. P. Huang. Coupled-mode theory. Proc. IEEE, 79, 1505-1518(1991).

    [34] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [35] D. Walls, G. Milburn. Input–output formulation of optical cavities. Quantum Optics, 127-141(2008).

    [36] D. Griffiths, R. College. Introduction to Electrodynamics, 3(1999).

    CLP Journals

    [1] Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction[J]. Photonics Research, 2019, 7(12): 1440

    Yong-Pan Gao, Tie-Jun Wang, Cong Cao, Chuan Wang. Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system[J]. Photonics Research, 2017, 5(2): 113
    Download Citation