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The modulation of resonance features in microcavities is important to applications in nanophotonics. Based on
the asymmetric whispering-gallery modes (WGMs) in a plasmonic resonator, we theoretically studied the mode
evolution in an asymmetric WGM plasmonic system. Exploiting the gap or nano-scatter in the plasmonic ring
cavity, the symmetry of the system will be broken and the standing wave in the cavity will be tunable. Based
on this asymmetric structure, the output coupling rate between the two cavity modes can also be tuned.
Moreover, the proposed method could further be applied for sensing and detecting the position of defects in
a WGM system. © 2017 Chinese Laser Press
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1. INTRODUCTION

Surface plasmon polaritons (SPPs) are the collective oscillations
of electrons on metal-dielectric interfaces [1,2]. During the
past decades, SPPs have been widely studied due to their
strong electromagnetic (EM) fields and sub-wavelength fea-
tures. In practical application, SPPs can be used as sensors
for chemical and biological analysis [3,4]. The whispering-
gallery modes (WGMs) are waves such as light and sound
that travel around a concave surface. Whispering-gallery waves
were first explained by Rayleigh [5]. With the characteristics
of high-quality factor and small-mode value, the application
and fabrication of optical WGMs turn into a hot point
[6–16]. The study of optical WGMs can be traced back to
the early part of the 20th century [6,7]. Because the quality
factor of the optical whispering-gallery cavity could reach as
high as 108 Q-factor [8–10], it could be widely applied in
modern optics, such as particle sensing [11,12], frequency
comb generation [13], and optomechanically induced trans-
parency [14,15]. As a special form of EM waves, much like
the optical modes of a microcavity, a broad continuum of
SPP modes can be observed in WGM modes. Recently, the
high-Q SPP whispering-gallery microcavity was also experi-
mentally achieved [17].

Due to its high quality factor, optical WGM resonators
are extensively studied in sensing technology. In 2007, the

experimental schemes of label-free single molecule detection
were demonstrated [18,19]. In the field of biomedical sensing,
detection on a single virus level was experimentally achieved
based on discrete changes in the resonance frequency/wavelength
of a WGM [20–23]. More recently, based on elastic Rayleigh
scattering, effective sensing on nanoparticles was experimentally
realized at the nanometer level [12,24]. Meanwhile, sensing
based on sub-wavelength plasmonic structures has been widely
studied, such as plasmonic-enhanced WGM sensing [25], plas-
monic chain ring resonators [26], microring plasmonic cavities
[4], and the WGMs of SPPs [27].

In this paper, we theoretically study the gap induced mode
evolution by analyzing the field dynamics of the asymmetric
WGM microresonator in a metal–insulator–metal (MIM)
structure [28–30]. This method can be applied in position
detection and spectrum modulation. Practically, when the
ring-type plasmonic WGM resonator is imperfectly fabricated,
Rayleigh scattering occurs due to the presence of the defect
or the gap. We find the electric field distribution will change
according to the position change of the defect or the gap, so the
position of the defect could be detected.

This paper is organized in four sections. In Section 2, we
present the model and the analytical expressions of the sym-
metric reduced plasmonic WGM system. In Section 3, we
numerically analyzed the electric field distribution and solved
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the expression of the output coupling rate. In Section 4, we give
the transmission spectrum and the potential applications of the
transmission spectrum.

2. THEORETICAL MODEL

Figure 1 schematically shows the proposed plasmonic wave-
guide structure. The nattier blue and white part of the figure
represents silver and air, respectively. This system is designed
with the MIM SPPs structure, which supports the EM field
propagating in a sub-wavelength scale. The nano-ring cavity
with a thin gap is coupled with the waveguide. And the
scatter (gap) couples the clockwise (CW) and counterclockwise
(CCW) modes through the elastic Rayleigh scattering. Here the
width of the waveguide and ring resonator is 50 nm, the nearest
distance between the two subjects is 10 nm, and the width of
the nanogap in the ring resonator is 2 nm.

The symmetric plasmonic nano-resonator supports two
counterpropagating WGMs (CW and CCW). We use the an-
nihilation (creation) operators acw (a�cw) and accw (a�ccw) to sym-
bolize these two counter-propagating WGMs. The Hamiltonian
of the resonator system could be written as

H � ℏω�a†cwacw � a†ccwaccw�
� ℏg�a†ccwacw � a†cwaccw � a†cwacw � a†ccwaccw�; (1)

where ω denotes the eigenfrequency of the CW and CCW
modes, and g represents the coupling strength that is induced
by the elastic Rayleigh scattering. Based on the Heisenberg
equation, the equations for the motion of the system could
be written as

dacw
d t

� 1

iℏ
�acw; H � − κ0 � κout

2
acw −

ffiffiffiffiffiffi
κin

p
aincw (2)

daccw
dt

� 1

iℏ
�accw; H � − κ0 � κout

2
accw −

ffiffiffiffiffiffi
κin

p
ainccw : (3)

Here aincw and ainccw are the amplitude of the input CW and
CCW fields, respectively. κ0 � ω∕Q corresponds to the in-
trinsic damping in the mode, with Q being the intrinsic
and external quality factors [9,10]. κin and κout are the fiber

taper-resonator input and output coupling rate. Considering
that the input and output coupling rate are different from each
other for the existence of the standing wave, we give a numeri-
cal solution of the EM field in the following part. By applying
the bosonic commutation relations, Eqs. (2) and (3) can be
expressed as

dacw
d t

� −i��ω� g�acw � gaccw� −
κ0 � κout

2
acw −

ffiffiffiffiffiffi
κin

p
aincw;

(4)

daccw
dt

� −i��ω� g�accw � gacw� −
κ0 � κout

2
accw −

ffiffiffiffiffiffi
κin

p
ainccw :

(5)

Based on the dipole approximation of the scatterer in the
subwavelength scattering (Rayleigh scattering) progress [31],
the coupling coefficients could be written as

g � −
αf 2�r�ω
2V c

; α � V p
εp − εm
εp � 2εm

: (6)

V c denotes the quantization volume of the WGM. f 2�r�
is the mode function, and α represents the polarizability of
the scatterer with volume V p, and εp and εm represent electric
permittivities of the particle and the surrounding medium,
respectively. By replacing the modes of the resonator with a� �
�acw � accw�∕

ffiffiffi
2

p
and that of the input modes with ain� �

�aincw � ainccw�∕
ffiffiffi
2

p
[32–34], we find that in a steady-state regime

the normal modes can be expressed as�
−i�Δ − 2g� � κout � κ0

2

�
a� � ffiffiffiffiffiffi

κin
p

ain� � 0 (7)

�
−iΔ� κout � κ0

2

�
a− �

ffiffiffiffiffiffi
κin

p
ain− � 0; (8)

where Δ � ωp − ω denotes the laser-cavity detuning. Consider
the system is single side pumped and denote the absence of the
CCW input as ainCCW � 0. Based on the input–output relation-
ship [35], we could solve the transmission coefficient of the
coupled system as

t � 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κout�λ; θ�κin

p
β

β2 � g2
;

β � −i�Δ − g� � κ0 � κout
2

: (9)

As shown in the transmission coefficient, we assume the
output coupling κout is related to both the position of the
defect and the pumping frequency. For simplicity, if we take
κout�λ; θ� � ϕ�λ; θ�2κin, then Eq. (9) can be expressed as

t � 1 −
ϕ�λ; θ�κinβ
β2 � g2

: (10)

3. EFFECT OF FIELD DISTRIBUTION ON THE
OUTPUT COUPLING RATE

When we consider both the existence of the CW and CCW
modes, the standing wave condition could be satisfied. It is ob-
vious that the standing wave field would be affected by both the

A

B tuptuOtupnI

Nanogap

Fig. 1. MIM structure studied in this paper. The waveguide and
ring resonator have a width of 50 nm, the nearest distance between
the two subjects is 10 nm, and the nanogap in the ring resonator is
2 nm. For convenience, here we give two points A and B to discuss
later. The metal in this paper is Ag. Its Drude parameter is high
frequency relative permittivity ϵ∞ � 3.7, the plasma frequency is
ωp � 9.1 eV, and the plasma decay is γp � 0.018 eV.
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position of the scatter and the pump frequency and the stan-
dard standing wave can be written as [36]

E�θ� � E0 sin�θ� φ1�θscatter� � φ2�λ��: (11)

Here E�θ� describes that the relationship between the dis-
tribution of field and the position of the detection point (theta).
E0 is the amplitude of the field, and the trigonometric function
corresponds to the spatial dependence of the standing wave.
θ represents the phase connected with the detection position.
The terms φ1�θscatter� and φ2�λ� show that the phase of the
system could be affected by the position of the scatter and
the input field wavelength, respectively. Based on the numerical
results of the field distribution, we give the phenomenological
expression of these two parts (φ1�θscatter� and φ2�λ�).

In the following, we solve the electric field equations using
the finite element method (FEM). The electric field in the two-
dimensional MIM waveguide could be described as [31,36]

∇ ×
∇ × E
μ

− ϵk2E � 0; E�x; y; z� � E�x; y�e−ikz z : (12)

Here μ is the relative permeability, k denotes the wave num-
ber, and kz stands for the wave number in the z direction. Also
ϵ represents the relative dielectric constant for the metal area,
which is described by the Drude model as ϵ�ω� � ϵ∞ − ω2

p∕
�ω2 � iγpωp�, with high frequency relative dielectric constant

ϵ∞, plasma frequency ωp, and decay γp. Here we choose Ag as
the substrate material with the high frequency relative permit-
tivity ϵ∞ � 3.7, the plasma frequency ωp � 9.1 eV, and the
plasma decay γp � 0.018 eV.

In Fig. 2, we plot the distribution of the electric field in the
ring cavity with a notch under the different position. The inset
figure shows the field magnitude of the electric field. θ corre-
sponds to the angle along the ring resonator in a CCW direc-
tion, and we take the gap as the starting point(θ � 0) in this
figure. This distribution shows that the electric field distri-
bution fits with the sinusoidal function. Considering the
harmonic oscillatory and linear propagating feature of this
structure and assuming that the high-order term of φ1�θscatter�
and φ2�λ� are physically negligible, Eq. (11) can be written as

E�θ� � E0 sin

�
θ� θscatter �

107πλ

2
� 0.15

�
; (13)

where E0 shows the maximal value of the electric field intensity
in the ring cavity, and θscatter denotes that the standing wave is
determined by the position of the scatter.

In Fig. 3, the electric field intensity at point B is plotted
under the condition that the scatter (gap) has different angles
with point A in the CCW direction. The EM field has twice
minimal and maximum values compare with Fig. 2 for both
982 and 1081 nm in the range of 2π. The coupling rate

(a)

(b)

Fig. 2. Electric field distribution of the input field with wavelength
(a) 982 and (b) 1081 nm. Here we take the gap as the origin point
and rotate around the ring resonator CCW with an angle of 2π.
The inset figure shows the field magnitude of the electric field.

(a)

(b)

Fig. 3. Electric field distribution of the ring resonator in Fig. 1.
The resonance wavelength with (a) 982 and (b) 1081 nm. Here the
gap is rotated CCW around the ring resonator from point B.
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between the cavity and waveguide is proportional to the electric
field intensity in the near waveguide region. We notice that the
output coupling strength starts to weaken when the wave loop
is closed with the waveguide. A minimal point of the field in-
tensity point also appears. The electric field at point B also
could be affected both by the cavity field strength and the de-
tection position. The electric field in point B is as shown in
Fig. 2. The maximum electric field is connected to the mode
amplitude E0. The coupling strength of the cavity and wave-
guide is decided by the scattering in the cavity. Compared with
the electric field distribution shown in Eq. (13), we can write
the ϕ�λ; θ� as

ϕ�θ; λ� � sin

�
θ� θscatter �

πλ107

2
� 0.15

�
: (14)

4. GAP INDUCED MODE EVOLUTION ON THE
TRANSMISSION SPECTRUM

To further explore the characteristics of this system, we study
the transmission spectrum using the FEM. As shown in Fig. 4,
we simulate both the perfect and the defect cavity condition
with the defect at an angle of π∕4 in the CW direction with
point A. We can conclude that in Fig. 4(a) there are several
plasmonic modes in this structure. Meanwhile, the influence

of mode coupling is shown in Fig. 4(b). Based on the distance
of mode splitting, we can numerically find the coupling
strength between CCW and CW modes. The transmission
could also reveal the coupling strength between the cavity
resonator and the waveguide. For the modes of 1081 nm, the
coupling strength is 87.4 THz according to the numerical re-
sult in Fig. 4(b). The strong coupling comes from the strong
mode energy change between the CW and CCW when the
scatter is small. The FWHM in Fig. 4(a) shows that the intrin-
sic decay (the width of the Lorentz spectrum) of the WGMs is
8.9 THz. The input coupling strength between the waveguide
and WGMs κin can be solved by fitting the minimum point of
the coupling mode theory and input–the output relationship
with the simulation value, and it is κin � 2.4 THz. We can
write transmission equations [Eq. (9)] based on coupled mode
theory as

(a)

(b)
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Fig. 4. Transmission spectrum of (a) a perfect ring resonator (b) the
nanogap has an angle of π∕4 with point A in the CCW direction.

(a)

(b)

(c)
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Fig. 5. Simulation of spectrum using the coupled mode theory
(solid lines) and the FEM (dashed lines) with a different angle between
the gap and point B. Here we take the CCW direction from B to
the gap as the positive direction. The angle is selected as (a) π∕2,
(b) 3π∕4, and (c) π.

116 Vol. 5, No. 2 / April 2017 / Photonics Research Research Article



T �
����1 − ϕ�λ; θ�κinββ2 � g2

����
2

;

β � i�Δ� g� � κ0 � κout
2

;

ϕ�θ; λ� � sin

�
θ� θscatter �

πλ107

2
� 0.15

�
: (15)

As shown in Fig. 5, we plot the transmission spectrum based
on both the coupled mode theory and FEM. It shows that the
result of the coupled mode theory has high consistency with
that of the FEM. The gap is placed at the π∕2 angle in a
CCW direction with point B. The transmission is shown in
Fig. 5(a), where the strength of a� mode is stronger than a−,
which corresponds to the low transmission rate in a� mode
(982 nm) but is high for a− mode(1081 nm). When the angle
is 3π∕4, as shown in Fig. 5(b), the transmission rate will be
approximately equal. When the angle is changed to π, the

situation is just the opposite and the transmission rate of the
a� mode is quite weak compared to a− mode, as shown in
Fig. 5(c). Both the transmission spectrum in Fig. 5 and the
expression in Eq. (15) show that the transmission spectrum will
change along with the position of the gap. It means the trans-
mission spectrum can be modulated by the position of the
gap (defect).

Finally in Fig. 6, we plot the transmission spectrum with
different defect positions as an inside walls defect in (a), an ex-
inous defect in (b), and an in-cavity nano-tip (a defect not in
touch with both the inner and outer walls of the cavity) in (c)
works as a scatter. We take the angle of the scatter to be the
same with Fig. 5(b). Under this condition, the strength of
a− and a� mode are comparable. In these figures, the difference
in mode splitting can be attributed to the difference related to
the strength of the Rayleigh scattering.

5. CONCLUSION

In summary, we theoretically studied mode evolution in an
asymmetric WGM plasmonic resonator system. We find the
transmission spectrum of the plasmonic system can be tuned
by the gap in the plasmonic resonator. We also give both the
analytical and simulation calculation based on the coupled
mode theory and the FEM. Both methods show that the trans-
mission can be modulated by adjusting the gap position.
On the other hand, the proposed method could further be
applied for sensing and detecting the position of defects in
WGM systems.
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