• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111428 (2020)
Zhaodi Chen, Jichao Li, Shanlin Xiao, Han Yang**, Yuchen Zhang, Ziying Zhao, and Yonglai Zhang*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/LOP57.111428 Cite this Article Set citation alerts
    Zhaodi Chen, Jichao Li, Shanlin Xiao, Han Yang, Yuchen Zhang, Ziying Zhao, Yonglai Zhang. Laser Reduced Graphene Oxide for Thin Film Flexible Electronic Devices[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111428 Copy Citation Text show less
    References

    [1] Xin W, Li X K, He X L et al. Black-phosphorus-based orientation-induced diodes[J]. Advanced Materials, 30, 1704653(2018).

    [2] Xin W, Jiang H B, Sun T Q et al. Optical anisotropy of black phosphorus by total internal reflection[J]. Nano Materials Science, 1, 304-309(2019).

    [3] Xin W, Jiang H B, Li X K et al. Photoinduced orientation-dependent interlayer carrier transportation in cross-stacked black phosphorus van der waals junctions[J]. Advanced Materials Interfaces, 5, 1800964(2018).

    [4] Yu X H, Du K X, Yang P Z. Preparation of low-dimensional black phosphorus and its application in solar cells[J]. Laser & Optoelectronics Progress, 56, 140001(2019).

    [5] Chen J H, Tan J, Wu G X et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures[J]. Light: Science & Applications, 8, 1-8(2019).

    [6] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [7] Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [8] Du X, Skachko I, Barker A et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 3, 491-495(2008).

    [9] Wang F, Zhang Y, Tian C et al. Gate-variable optical transitions in graphene[J]. Science, 320, 206-209(2008).

    [10] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).

    [11] Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene[J]. Physical Review Letters, 96, 256802(2006).

    [12] Xin W, Chen X D, Liu Z B et al. Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance[J]. Advanced Optical Materials, 4, 1703-1710(2016).

    [13] Zhang X Y, Sun S H, Sun X J et al. Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors[J]. Light: Science & Applications, 5, e16130(2016).

    [14] Li Z W, Lu H, Li Y W et al. Near-infrared light absorption enhancement in graphene induced by the tamm state in optical thin films[J]. Acta Optica Sinica, 39, 0131001(2019).

    [15] Cao Z X, Yao B C, Qin C Y et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity[J]. Light: Science & Applications, 1-10(2019).

    [16] Li C, Lu X Q, Yu C B et al. Fiber-optic acoustic sensor based on multi-layered graphene material[J]. Acta Optica Sinica, 38, 0328017(2018).

    [17] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).

    [18] Tan T, Yuan Z Y, Chen Y F et al. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 56, 170613(2019).

    [19] Zeng B B, Huang Z Q, Singh A et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light: Science & Applications, 7, 1-8(2018).

    [20] Wang W H, Du R X, Guo X T et al. Interfacial amplification for graphene-based position-sensitive-detectors[J]. Light: Science & Applications, 6, e17113(2017).

    [21] Qu D, Zheng M, Li J et al. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications[J]. Light: Science & Applications, 4, e364(2015).

    [22] Ke W M, Li Z H, Zhou Z X et al. Reduced graphene oxide-based interferometric fiber-optic humidity sensor[J]. Acta Optica Sinica, 39, 1206007(2019).

    [23] Han D D, Zhang Y L, Liu Y et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers[J]. Advanced Functional Materials, 25, 4548-4557(2015).

    [24] Wu J F, Wang H T, Su Z W et al. Highly flexible and sensitive wearable E-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available[J]. ACS Applied Materials & Interfaces, 9, 38745-38754(2017).

    [25] Zhang Y L, Liu Y Q, Han D D et al. Actuators: quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials, 31, 1970231(2019).

    [26] Han D D, Zhang Y L, Ma J N et al. Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design[J]. Advanced Materials Technologies, 2, 1700045(2017).

    [27] Wang Z A, Wang H T, Hao Z et al. Tailoring highly flexible hybrid supercapacitors developed by graphite nanoplatelets-based film: toward integrated wearable energy platform building blocks[J]. ACS Applied Energy Materials, 1, 5336-5346(2018).

    [28] Zhang Y L, Ma J N, Liu S et al. A “Yin”-“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators[J]. Nano Energy, 68, 104302(2020).

    [29] Hernandez Y, Nicolosi V, Lotya M et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 3, 563-568(2008).

    [30] Smith R J, King P J, Lotya M et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 23, 3944-3948(2011).

    [31] Coleman J N, Al E. ChemInform abstract: two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. ChemInform, 331, 568-571(2011).

    [32] Penuelas J, Ouerghi A, Lucot D et al. Surface morphology and characterization of thin graphene films on SiC vicinal substrate[J]. Physical Review B, 79, 033408(2009).

    [33] Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD[J]. Chemical Physics Letters, 430, 56-59(2006).

    [34] Uz M, Jackson K, Donta M S et al. Fabrication of high-resolution graphene-based flexible electronics via polymer casting[J]. Scientific Reports, 9, 10595(2019).

    [35] Zhang D, Chi B H, Li B W et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals, 217, 79-86(2016).

    [36] Karim N, Afroj S, Malandraki A et al. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications[J]. Journal of Materials Chemistry C, 5, 11640-11648(2017).

    [37] Geng D C, Wang H P, Wan Y et al. Direct top-down fabrication of large-area graphene arrays by an in situ etching method[J]. Advanced Materials, 27, 4195-4199(2015).

    [38] Han D D, Liu Y Q, Ma J N et al. Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient[J]. Advanced Materials Technologies, 3, 1800258(2018).

    [39] Han D D, Zhang Y L, Ma J N et al. Light-mediated manufacture and manipulation of actuators[J]. Advanced Materials, 28, 8328-8343(2016).

    [40] Lu Z Y, Zhou G S, Song M S et al. Magnetic functional heterojunction reactors with 3D specific recognition for selective photocatalysis and synergistic photodegradation in binary antibiotic solutions[J]. Journal of Materials Chemistry A, 7, 13986-14000(2019).

    [41] Lu Z Y, He F, Hsieh C Y et al. Magnetic hierarchical photocatalytic nanoreactors: toward highly selective Cd 2+ removal with secondary pollution free tetracycline degradation[J]. ACS Applied Nano Materials, 2, 1664-1674(2019).

    [42] Han D D, Zhang Y L, Jiang H B et al. Graphene: moisture-responsive graphene paper prepared by self-controlled photoreduction[J]. Advanced Materials, 27, 8328-8343(2015).

    [43] Fang H H, Chen Q D, Yang J et al. Two-photon pumped amplified spontaneous emission from cyano-substituted oligo(p-phenylenevinylene) crystals with aggregation-induced emission enhancement[J]. The Journal of Physical Chemistry C, 114, 11958-11961(2010).

    [44] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).

    [45] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [46] Wei C, Ma Y P, Han Y et al. Femtosecond laser processing of ultrahard materials[J]. Laser & Optoelectronics Progress, 56, 190003(2019).

    [47] Jalil S A, Lai B. ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 9, 1-9(2020).

    [48] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [49] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [50] Wu D, Wu S Z, Chen Q D et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels[J]. Lab on a Chip, 11, 3873-3879(2011).

    [51] Wu D, Chen Q D, Niu L G et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 9, 2391-2394(2009).

    [52] Jin Y, Feng J, Zhang X L et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 24, 1187-1191(2012).

    [53] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).

    [54] Liu Y Q, Chen Z D, Mao J W et al. Laser fabrication of graphene-based electronic skin[J]. Frontiers in Chemistry, 7, 461(2019).

    [55] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 80, 1339(1958). http://pubs.acs.org/doi/pdf/10.1021/ja01539a017

    [56] Ishikawa T, Kanemaru T, Teranishi H, expanded graphite material: US4094951[P] et al. -06-13(1978).

    [57] Touzain P, Yazami R. -04-22[P]. Maire J. Insertion compounds of graphite with improved performances, electrochemical applications of those compounds: US4584252.(1986).

    [58] Mkhoyan K A, Contryman A W, Silcox J et al. Atomic and electronic structure of graphene-oxide[J]. Nano Letters, 9, 1058-1063(2009).

    [59] Ma J N, Mao J W, Han D D et al. Laser programmable patterning of RGO/GO Janus paper for multiresponsive actuators[J]. Advanced Materials Technologies, 4, 1900554(2019).

    [60] Liu Y Q, Mao J W, Chen Z D et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 45, 113-116(2020).

    [61] Schniepp H C, Li J L. McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B, 110, 8535-8539(2006).

    [62] McAllister M J, Li J L, Adamson D H et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 19, 4396-4404(2007).

    [63] Bourlinos A B, Gournis D, Petridis D et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 19, 6050-6055(2003).

    [64] Stankovich S, Piner R D, Chen X Q et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 16, 155-158(2006).

    [65] You R, Liu Y Q, Hao Y L et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 1901981(2019).

    [66] Huang L, Liu Y, Ji L C et al. Pulsed laser assisted reduction of graphene oxide[J]. Carbon, 49, 2431-2436(2011).

    [67] Bäuerle D. Laser processing and chemistry: recent developments[J]. Applied Surface Science, 186, 1-6(2002).

    [68] Trusovas R, Ratautas K. RaAcˇiukaitis G, et al. Reduction of graphite oxide to graphene with laser irradiation[J]. Carbon, 52, 574-582(2013).

    [69] Senyuk B, Behabtu N, Martinez A et al. Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions[J]. Nature Communications, 6, 7157(2015).

    [70] Smirnov V A, Arbuzov A A, Shul’ga Y M et al. Photoreduction of graphite oxide[J]. High Energy Chemistry, 45, 57-61(2011).

    [71] Zhou Y, Bao Q L, Varghese B et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 22, 67-71(2010).

    [72] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010).

    [73] Watanabe A, Aminuzzaman M, Cai J G et al. Laser direct writing of microstructure on graphene oxide/metal oxide hybrid film[J]. Journal of Photopolymer Science and Technology, 32, 223-226(2019).

    [74] Han B, Zhang Y L, Zhu L et al. Soft robotics: plasmonic-assisted graphene oxide artificial muscles[J]. Advanced Materials, 31, 1970029(2019).

    [75] El-Kady M F, Strong V, Dubin S et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).

    [76] Jiang H B, Zhang Y L, Han D D et al. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference[J]. Advanced Functional Materials, 24, 4595-4602(2014).

    [77] Li F, Jiang X, Zhao J J et al. Graphene oxide: a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 16, 488-515(2015).

    [78] Cai W, Piner R D, Stadermann F J et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science, 321, 1815-1817(2008).

    [79] Guo L, Jiang H B, Shao R Q et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J]. Carbon, 50, 1667-1673(2012).

    [80] Silipigni L, Fazio M, Fazio B et al. Tailoring the oxygen content of graphene oxide by IR laser irradiation[J]. Applied Physics A, 124, 545(2018).

    [81] Strong V, Dubin S. El-Kady M F, et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 6, 1395-1403(2012).

    [82] Wan Z F, Wang S J, Haylock B et al. Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser[J]. Carbon, 141, 83-91(2019).

    [83] Guo L, Zhang Y L, Han D D et al. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides[J]. Advanced Optical Materials, 2, 120-125(2014).

    [84] Rodriguez R D, Murastov G V, Lipovka A et al. High-power laser-patterning graphene oxide: a new approach to making arbitrarily-shaped self-aligned electrodes[J]. Carbon, 151, 148-155(2019).

    [85] Liu D X, Sun Y L, Dong W F et al. Dynamic laser prototyping for biomimetic nanofabrication[J]. Laser & Photonics Reviews, 8, 882-888(2014).

    [86] Abid M I, Wang L, Chen Q D et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures[J]. Laser & Photonics Reviews, 11, 1600187(2017).

    [87] Jiang H B, Liu Y, Liu J et al. Moisture-responsive graphene actuators prepared by two-beam laser interference of graphene oxide paper[J]. Frontiers in Chemistry, 7, 464(2019).

    [88] Zhang Y L, Chen Q D, Jin Z et al. Biomimetic graphene films and their properties[J]. Nanoscale, 4, 4858-4869(2012).

    [89] Oostinga J B, Heersche H B, Liu X L et al. Gate-induced insulating state in bilayer graphene devices[J]. Nature Materials, 7, 151-157(2008).

    [90] You R, Han D D, Liu F M et al. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites[J]. Sensors and Actuators B: Chemical, 277, 114-120(2018).

    [91] Guo L, Hao Y W, Li P L et al. Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference[J]. Scientific Reports, 8, 4918(2018).

    [92] Smith A D, Niklaus F, Paussa A et al. Electromechanical piezoresistive sensing in suspended graphene membranes[J]. Nano Letters, 13, 3237-3242(2013).

    [93] Tian H, Shu Y, Wang X F et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Scientific Reports, 5, 8603(2015).

    [94] Jin F H, Pang Y, Cai W L et al. High performance and low-cost graphene vacuum pressure sensor based on one-step laser scribing[J]. Applied Physics Letters, 114, 081602(2019).

    [95] Zhu Y S, Li J W, Cai H B et al. Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide[J]. Sensors and Actuators B: Chemical, 255, 1262-1267(2018).

    [96] Tian H, Shu Y, Cui Y L et al. Scalable fabrication of high-performance and flexible graphene strain sensors[J]. Nanoscale, 6, 699-705(2014).

    [97] Qiao Y C, Wang Y F, Tian H et al. Multilayer graphene epidermal electronic skin[J]. ACS Nano, 12, 8839-8846(2018).

    [98] Jia J, Huang G T, Wang M T et al. Multi-functional stretchable sensors based on a 3D-rGO wrinkled microarchitecture[J]. Nanoscale Advances, 1, 4406-4414(2019).

    [99] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).

    [100] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013).

    [101] Fu X Y, Zhang Y L, Jiang H B et al. Hierarchically structuring and synchronous photoreduction of graphene oxide films by laser holography for supercapacitors[J]. Optics Letters, 44, 1714-1717(2019).

    [102] Yang C, Huang Y X, Cheng H H et al. Hygroelectric generators: rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Advanced Materials, 31, 1970013(2019).

    [103] Cheng H, Huang Y, Qu L et al. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel[J]. Nano Energy, 45, 37-43(2018).

    Zhaodi Chen, Jichao Li, Shanlin Xiao, Han Yang, Yuchen Zhang, Ziying Zhao, Yonglai Zhang. Laser Reduced Graphene Oxide for Thin Film Flexible Electronic Devices[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111428
    Download Citation