• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011011 (2021)
Sarkar Tushar1, Chandra Mandal Aditya2, Ziyang Chen3, Jixiong Pu3, and Kumar Singh Rakesh1、*
Author Affiliations
  • 1Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
  • 2Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
  • 3College of Information Science and Engineering, Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian 361021, China
  • show less
    DOI: 10.3788/LOP202158.1011011 Cite this Article Set citation alerts
    Sarkar Tushar, Chandra Mandal Aditya, Ziyang Chen, Jixiong Pu, Kumar Singh Rakesh. Correlation Holography with A Single-Pixel Detector: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011011 Copy Citation Text show less
    References

    [1] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 197, 454-487(1949). http://europepmc.org/abstract/MED/14775684

    [2] Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America, 54, 1295-1301(1964).

    [3] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 11, 77-79(1967).

    [4] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).

    [5] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).

    [6] Ulf S, Werner J. Digital holography[M](2005).

    [7] Mann C J, Yu L F, Lo C M et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 13, 8693-8698(2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8693

    [8] Micó V, Zheng J J, Garcia J et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135-214(2019). http://www.researchgate.net/publication/331904995_Resolution_enhancement_in_quantitative_phase_microscopy

    [9] Osten W, Faridian A, Gao P et al. Recent advances in digital holography[J]. Applied Optics, 53, G44-G63(2014). http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2014-T2C.1

    [10] Shaked N T. Quantitative phase microscopy of biological samples using a portable interferometer[J]. Optics Letters, 37, 2016-2018(2012).

    [11] Lee K, Kim K, Jung J et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 13, 4170-4191(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3673078/

    [12] Park Y K, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).

    [13] Lohmann A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 4, 1667-1668(1965). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-4-12-1667

    [14] Colomb T, Dahlgren P, Beghuin D et al. Polarization imaging by use of digital holography[J]. Applied Optics, 41, 27-37(2002). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-41-1-27

    [15] Nomura T, Javidi B, Murata S et al. Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography[J]. Optics Letters, 32, 481-483(2007).

    [16] Kuroda K, Matsuhashi Y, Fujimura R et al. Theory of polarization holography[J]. Optical Review, 18, 374-382(2011).

    [17] Barada D, Ochiai T, Fukuda T et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave[J]. Optics Letters, 37, 4528-4530(2012). http://europepmc.org/abstract/MED/23114352

    [18] Singh R K, Naik D N, Itou H et al. Stokes holography[J]. Optics Letters, 37, 966-968(2012).

    [19] Singh D, Singh R K. Lensless stokes holography with the hanbury brown-twiss approach[J]. Optics Express, 26, 10801-10812(2018). http://europepmc.org/abstract/MED/29716011

    [20] Setälä T, Tervo J, Friberg A T. Stokes parameters and polarization contrasts in Young’s interference experiment[J]. Optics Letters, 31, 2669-2667(2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2208

    [21] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [22] Kuusela T A. Single-pixel camera[J]. American Journal of Physics, 87, 846-850(2019).

    [23] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).

    [24] Li M D, Mathai A, Li Y D et al. A brief review on 2D and 3D image reconstruction using single-pixel imaging[J]. Laser Physics, 30, 095204(2020). http://www.researchgate.net/publication/343557617_A_brief_review_on_2D_and_3D_image_reconstruction_using_single-pixel_imaging

    [25] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://nar.oxfordjournals.org/external-ref?access_num=10.1109/MSP.2007.914730&link_type=DOI

    [26] Sen P, Chen B, Garg G et al. Dual photography[C]. //ACM SIGGRAPH 2005 Papers on-SIGGRAPH ‘05, July 31-August 4, 2005, Los Angeles, California., 745-755(2005).

    [27] Baraniuk R, Steeghs P. Compressive radar imaging[C]. //2007 IEEE Radar Conference, April 17-20, 2007, Waltham, MA, USA., 128-133(2007).

    [28] Dahan M. Compressive fluorescence microscopy for biological and hyperspectral imaging[C]. //Imaging Systems and Applications 2012, June 24-28, 2012, Monterey, California United States, IM4C.5(2012).

    [29] Yu W K, Liu X F, Yao X R et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 4, 5834(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC5376059/

    [30] Hahn J, Debes C, Leigsnering M et al. Compressive sensing and adaptive direct sampling in hyperspectral imaging[J]. Digital Signal Processing, 26, 113-126(2014). http://www.sciencedirect.com/science/article/pii/S1051200413002807

    [31] Edgar M P, Gibson G M, Bowman R W et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015). http://www.ncbi.nlm.nih.gov/pubmed/26001092

    [32] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [33] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [34] Stantchev R I, Yu X, Blu T et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 11, 2535(2020). http://www.nature.com/articles/s41467-020-16370-x

    [35] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [36] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 19, 732(2019).

    [37] Chen Q, Chamoli S K, Yin P et al. Imaging of hidden object using passive mode single pixel imaging with compressive sensing[J]. Laser Physics Letters, 15, 126201(2018). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiAzNWFlZGMxYjA5MGM3NmZiN2E3YmFlNzM0NjhkN2Y4ORoIdGFyMWZ6OGQ%3D

    [38] Bian L H, Suo J L, Dai Q H et al. Experimental comparison of single-pixel imaging algorithms[J]. Journal of the Optical Society of America A, 35, 78-87(2017).

    [39] Zhang Z B, Wang X Y, Zheng G A et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041155

    [40] Bian L H, Suo J L, Situ G H et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4840436/

    [41] Lu T A, Qiu Z H, Zhang Z B et al. Comprehensive comparison of single-pixel imaging methods[J]. Optics and Lasers in Engineering, 134, 106301(2020). http://www.sciencedirect.com/science/article/pii/S0143816620304930

    [42] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).

    [43] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005). http://www.ncbi.nlm.nih.gov/pubmed/16089668

    [44] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [45] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [46] Padgett M J, Boyd R W. An introduction to ghost imaging: quantum and classical[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160233(2017).

    [47] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2, 405-450(2010).

    [48] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [49] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009). http://arxiv.org/abs/0812.2633

    [50] Soltanlou K, Latifi H. Three-dimensional imaging through scattering media using a single pixel detector[J]. Applied Optics, 58, 7716-7726(2019). http://www.ncbi.nlm.nih.gov/pubmed/31674452

    [51] Liu H C. Imaging reconstruction comparison of different ghost imaging algorithms[J]. Scientific Reports, 10, 14626(2020). http://www.nature.com/articles/s41598-020-71642-2

    [52] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [53] Ying G R, Wei Q, Shen X et al. A two-step phase-retrieval method in Fourier-transform ghost imaging[J]. Optics Communications, 281, 5130-5132(2008).

    [54] Gong W L, Han S S. Phase-retrieval ghost imaging of complex-valued objects[J]. Physical Review A, 82, 023828(2010).

    [55] Shirai T, Setälä T, Friberg A T. Ghost imaging of phase objects with classical incoherent light[J]. Physical Review A, 84, 041801(2011).

    [56] Zhang D J, Tang Q, Wu T F et al. Lensless ghost imaging of a phase object with pseudo-thermal light[J]. Applied Physics Letters, 104, 121113(2014). http://scitation.aip.org/content/aip/journal/apl/104/12/10.1063/1.4869959

    [57] Vinu R V, Chen Z Y, Singh R K et al. Ghost diffraction holographic microscopy[J]. Optica, 7, 1697-1704(2020).

    [58] Clemente P, Durán V, Tajahuerce E et al. Single-pixel digital ghost holography[J]. Physical Review A, 86, 041803(2012). http://www.oalib.com/paper/3396381

    [59] Martínez-León L, Clemente P, Mori Y et al. Single-pixel digital holography with phase-encoded illumination[J]. Optics Express, 25, 4975-4984(2017). http://europepmc.org/abstract/MED/28380764

    [60] Horisaki R, Matsui H, Tanida J. Single-pixel compressive diffractive imaging with structured illumination[J]. Applied Optics, 56, 4085-4089(2017).

    [61] Liu R F, Zhao S P, Zhang P et al. Complex wavefront reconstruction with single-pixel detector[J]. Applied Physics Letters, 114, 161901(2019). http://www.researchgate.net/publication/332587854_Complex_wavefront_reconstruction_with_single-pixel_detector/download

    [62] Ota K, Hayasaki Y. Complex-amplitude single-pixel imaging[J]. Optics Letters, 43, 3682-3685(2018). http://www.researchgate.net/publication/326633787_Complex-amplitude_single-pixel_imaging

    [63] Zhao S, Liu R, Zhang P et al. Fourier single-pixel reconstruction of a complex amplitude optical field[J]. Optics Letters, 44, 3278-3281(2019). http://www.ncbi.nlm.nih.gov/pubmed/31259940

    [64] Shin S, Lee K, Baek Y et al. Reference-free single-point holographic imaging and realization of an optical bidirectional transducer[J]. Physical Review Applied, 9, 044042(2018).

    [65] Takeda M, Wang W, Duan Z H et al. Coherence holography[J]. Optics Express, 13, 9629-9635(2005).

    [66] Naik D N, Ezawa T, Miyamoto Y et al. 3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift[J]. Optics Express, 17, 10633-10641(2009).

    [67] Naik D N, Ezawa T, Singh R K et al. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer[J]. Optics Express, 20, 19658-19669(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-18-19658

    [68] Singh R K, Naik D N, Itou H et al. Vectorial coherence holography[J]. Optics Express, 19, 11558-11567(2011).

    [69] Naik D N, Singh R K, Ezawa T et al. Photon correlation holography[J]. Optics Express, 19, 1408-1421(2011).

    [70] Takeda M, Wang W, Naik D N et al. Spatial statistical optics and spatial correlation holography: a review[J]. Optical Review, 21, 849-861(2014). http://link.springer.com/article/10.1007/s10043-014-0138-2

    [71] Singh R K, Vinu R P V K, Sharma M S A. Recovery of complex valued objects from two-point intensity correlation measurement[J]. Applied Physics Letters, 104, 111108(2014).

    [72] Singh R K, Vinu R P V K, Sharma M S A. Retrieving complex coherence from two-point intensity correlation using holographic principle[J]. Optical Engineering, 53, 104102(2014).

    [73] Singh R K, Vyas S, Miyamoto Y. Lensless Fourier transform holography for coherence waves[J]. Journal of Optics, 19, 115705(2017). http://adsabs.harvard.edu/abs/2017JOpt...19k5705S

    [74] Saluja R, Subrahmanyam G R K S, Mishra D et al. Compressive correlation holography[J]. Applied Optics, 56, 6949-6955(2017).

    [75] Mishra S, Gautam S K, Naik D N et al. Tailoring and analysis of vectorial coherence[J]. Journal of Optics, 20, 125605(2018).

    [76] Mandel L, Wolf E. Optical coherence and quantum optics[M](1995).

    [77] Goodman J W. Statistical optics[M](1985).

    [78] Goodman J W. Speckle in certain nonimaging applications[M]. //Goodman J W. 2nd ed. Speckle phenomena in optics: theory and applications(2020).

    [79] Singh R K. Hybrid correlation holography with a single pixel detector[J]. Optics Letters, 42, 2515-2518(2017).

    [80] Chen Z Y, Singh D, Singh R K et al. Complex field measurement in a single pixel hybrid correlation holography[J]. Journal of Physics Communications, 4, 045009(2020).

    [81] Goldstein D H. Polarized light[M]. 3rd ed, 808(2011).

    [82] Singh A S G, Anand A, Leitgeb R A et al. Lateral shearing digital holographic imaging of small biological specimens[J]. Optics Express, 20, 23617-23622(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-21-23617

    [83] Lu Y J, Liu Y H, Lau T K. Simple, portable, and low-cost microscope based on off-axis digital holography using two spherical waves[J]. Optics Letters, 39, 4549-4552(2014).

    [84] Roitshtain D, Turko N A, Javidi B et al. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel[J]. Optics Letters, 41, 2354-2357(2016). http://www.ncbi.nlm.nih.gov/pubmed/27177001

    [85] Ma C J, Li Y, Zhang J W et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer[J]. Optics Express, 25, 13659-13667(2017). http://www.ncbi.nlm.nih.gov/pubmed/28788908

    [86] Varghese A, Das B, Singh R K. Highly stable lens-less digital holography using cyclic lateral shearing interferometer and residual decollimated beam[J]. Optics Communications, 422, 3-7(2018).

    [87] Naik D N, Singh R K, Itou H et al. Single-shot full-field interferometric polarimeter with an integrated calibration scheme[J]. Optics Letters, 37, 3282-3284(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ol-37-15-3282

    Sarkar Tushar, Chandra Mandal Aditya, Ziyang Chen, Jixiong Pu, Kumar Singh Rakesh. Correlation Holography with A Single-Pixel Detector: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011011
    Download Citation