• Journal of Semiconductors
  • Vol. 42, Issue 5, 052301 (2021)
Longxing Su1、2, Weixin Ouyang1, and Xiaosheng Fang1
Author Affiliations
  • 1Department of Materials Science, Fudan University, Shanghai 200433, China
  • 2Department of Physical Science and Technology, ShanghaiTech University, Shanghai 200433, China
  • show less
    DOI: 10.1088/1674-4926/42/5/052301 Cite this Article
    Longxing Su, Weixin Ouyang, Xiaosheng Fang. Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. Journal of Semiconductors, 2021, 42(5): 052301 Copy Citation Text show less
    References

    [1] H Y Chen, K W Liu, L F Hu et al. New concept ultraviolet photodetectors. Mater Today, 18, 493(2015).

    [2] Z Lou, X L Yang, H R Chen et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays. J Semicond, 39, 024002(2018).

    [3] L X Su, W Yang, J Cai et al. Self-powered ultraviolet photodetectors driven by built-in electric field. Small, 13, 1701687(2017).

    [4] X J Xu, J X Chen, S Cai et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 30, 1803165(2018).

    [5] L W Sang, M Y Liao, M Sumiya. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 13, 10482(2013).

    [6] SY Li, Y Zhang, W Yang et al. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater, 32, 1905443(2020).

    [7] G Konstantatos, A Levina et al. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett, 8, 1446(2008).

    [8] Y Z Jin, J P Wang, B Q Sun et al. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett, 8, 1649(2008).

    [9] B Zhao, F Wang, H Y Chen et al. An ultrahigh responsivity (9.7 mA W–1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv Funct Mater, 27, 1700264(2017).

    [10] W Y Kong, G A Wu, K Y Wang et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 28, 10725(2016).

    [11] X M Chen, K W Liu, Z Z Zhang et al. A self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl Mater Inter, 8, 4185(2016).

    [12] A S Pratiyush, S Krishnamoorthy, S V Solanke et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 110, 221107(2017).

    [13] F G Posada, R Songmuang, M D Hertog et al. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett, 12, 172(2012).

    [14] B Butuna, T Tut, E Ulker et al. High-performance visible-blind GaN-based p–i–n photodetectors. Appl Phys Lett, 92, 033507(2008).

    [15] G Y Xu, A Salvador, W Kim et al. High speed, low noise ultraviolet photodetectors based on GaN p–i–n and AlGaN(p)-GaN(i)-GaN(n) structures. Appl Phys Lett, 71, 2154(1997).

    [16] L X Zheng, P P Yu, K Hu et al. Scalable-production, self-powered TiO2 nanowell-organic hybrid UV photodetectors with tunable performances. ACS Appl Mater Inter, 8, 33924(2016).

    [17] X D Li, C T Gao, H G Duan et al. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy, 1, 640(2012).

    [18] M Patel, H S Kim, J Kim. All transparent metal oxide ultraviolet photodetector. Adv Electron Mater, 1, 1500232(2015).

    [19] Z Chen, B R Li, X M Mo et al. Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3. Appl Phys Lett, 110, 123504(2017).

    [20] J Cai, X J Xu, L X Su et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance. Adv Opt Mater, 6, 1800213(2018).

    [21] X J Xu, S Shukla, Y Liu et al. Solution-processed transparent self-powered p-CuS-ZnS/n-ZnO UV Photodiode. Phys Status Solidi RRL, 12, 1700381(2018).

    [22] L X Su, Q L Zhang, T Z Wu et al. High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction. Appl Phys Lett, 105, 072106(2014).

    [23] L X Su, Y Zhu, D Y Yong et al. Wide range bandgap modulation based on ZnO-based alloys and fabrication of solar blind UV detectors with high rejection ratio. ACS Appl Mater Inter, 6, 14152(2014).

    [24] T H Moon, M C Jeong, W Lee et al. The fabrication and characterization of ZnO UV detector. Appl Surf Sci, 240, 280(2005).

    [25] Z N Wang, R M Yu, X F Wang et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv Mater, 28, 6880(2016).

    [26] S Liang, H Sheng, Y Liu et al. ZnO Schottky ultraviolet photodetectors. J Cryst Growth, 225, 110(2001).

    [27] S J Pearton, D P Norton, K Ip et al. Recent progress in processing and properties of ZnO. Prog Mater Sci, 50, 293(2005).

    [28] Ü Özgüra, Y I Alivov, C Liu et al. A comprehensive review of ZnO and related devices. J Appl Phys, 98, 041301(2005).

    [29] H Shen, C Shan, B Li et al. Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors. Appl Phys Lett, 103, 232112(2013).

    [30] H D Cho, A S Zakirov, S U Yuldashev et al. Photovoltaic device on a single ZnO nanowire p –n homojunction. Nanotechnology, 23, 115401(2012).

    [31] K Hu, F Teng, L X Zheng et al. Binary response Se/ZnO p–n heterojunction UV photodetectorrnwith high on/off ratio and fast speed. Laser Photonics Rev, 11, 1600257(2017).

    [32] H Y Chen, P P Yu, Z M Zhang et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 12, 5809(2016).

    [33] J Li, H Li, G Zhan et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res, 50, 112(2017).

    [34] X Y Huang, B Li, H Guo. Synthesis, photoluminescence, cathodoluminescence and thermal properties of novel Tb3+-doped BiOCl green-emitting phosphors. J Alloy Compd, 695, 2773(2017).

    [35] Y W Zhang, X H Xu, Y Xing et al. Growth and electronic transport property of layered BiOCl microplates. Adv Mater Interfaces, 2, 1500194(2015).

    [36] S Dutta, T Das, S Datta. Impact of bi-axial strain on structural, electronic and optical properties of photo-catalytic bulk bismuth oxy-halides. Phys Chem Chem Phys, 20, 103(2018).

    [37] A Dash, S Sarkar, V N K B Adusumalli et al. Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+ -doped BiOX (X = Cl, Br, I) nanoflakes. Langmuir, 30, 1401(2014).

    [38] Y J Li, Q Wang, B C Liu et al. The {001} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl Surf Sci, 349, 957(2015).

    [39] G K Tripathi, R Kurchania. Photocatalytic behavior of BiOX (X = Cl/Br, Cl/I and Br/I) composites/heterogeneous nanostructures with organic dye. Opt Quant Electron, 49, 203(2017).

    [40] H F Cheng, B B Huang, Y Dai. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 6, 2009(2014).

    [41] Y X Yu, W X Ouyang, W D Zhang. Photoelectrochemical property of the BiOBr-BiOI/ZnO heterostructures with tunable bandgap. J Solid State Electrochem, 18, 1743(2014).

    [42] F Teng, W X Ouyang, Y M Li et al. Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film. Small, 13, 1700156(2017).

    Longxing Su, Weixin Ouyang, Xiaosheng Fang. Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. Journal of Semiconductors, 2021, 42(5): 052301
    Download Citation