• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823003 (2021)
Xiaoze Liu1、2, Xinyuan Zhang1、2, Shunping Zhang1、2, Zhiqiang Guan1、2, and Hongxing Xu1、2、3、*
Author Affiliations
  • 1School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
  • 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • 3The Institute for Advanced Studies Wuhan University, Wuhan, Hubei 430072, China
  • show less
    DOI: 10.3788/AOS202141.0823003 Cite this Article Set citation alerts
    Xiaoze Liu, Xinyuan Zhang, Shunping Zhang, Zhiqiang Guan, Hongxing Xu. Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities[J]. Acta Optica Sinica, 2021, 41(8): 0823003 Copy Citation Text show less
    References

    [1] Walther H. Varcoe B T H, Englert B G, et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 69, 1325-1382(2006).

    [2] Haroche S, Brune M, Raimond J M. From cavity to circuit quantum electrodynamics[J]. Nature Physics, 16, 243-246(2020). http://www.nature.com/articles/s41567-020-0812-1

    [3] Yamamoto Y, Tassone F, Cao H. Semiconductor cavity quantum electrodynamics[M]. Heidelberg: Springer(2000).

    [4] Khitrova G, Gibbs H M, Jahnke F et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 71, 1591(1999). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RMPHAT000071000005001591000001&idtype=cvips&gifs=Yes

    [5] Gibbs H M, Khitrova G, Koch S W. Exciton-polariton light-semiconductor coupling effects[J]. Nature Photonics, 5, 273(2011). http://www.nature.com/nphoton/journal/v5/n5/nphoton.2011.15/metrics/citations?page=4

    [6] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [7] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 87, 347(2015). http://arxiv.org/abs/1312.1079

    [8] Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices[J]. Nature Materials, 15, 1061-1073(2016). http://www.ncbi.nlm.nih.gov/pubmed/27429208

    [9] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 10, 216-226(2016). http://www.nature.com/nphoton/journal/v10/n4/fig_tab/nphoton.2015.282_T1.html

    [10] Liu X Z, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities[J]. IEEE Journal of Quantum Electronics, 51, 0600308(2015).

    [11] Schneider C, Glazov M M, Korn T et al. Two-dimensional semiconductors in the regime of strong light-matter coupling[J]. Nature Communications, 9, 2695(2018). http://europepmc.org/articles/PMC6043564/

    [12] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. PNAS, 102, 10451-10453(2005).

    [13] Chhowalla M, Shin H S, Eda G et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 5, 263-275(2013). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=23511414

    [14] Li X S, Cai W W, An J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 324, 1312-1314(2009). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=42310602&site=ehost-live

    [15] Lee Y H, Zhang X Q, Zhang W J et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 24, 2320-2325(2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201104798/pdf

    [16] Hua Z. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 9, 9451-9469(2015). http://www.ncbi.nlm.nih.gov/pubmed/26407037

    [17] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012). http://pubs.acs.org/servlet/linkout?suffix=ref11/cit11&dbid=8&doi=10.1021%2Fnn5034746&key=23132225

    [18] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [19] Kotov V N, Uchoa B, Pereira V M et al. Electron-electron interactions in graphene: Current status and perspectives[J]. Reviews of Modern Physics, 84, 1067(2012). http://www.oalib.com/paper/3628804

    [20] Castro Neto A H, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109(2009).

    [21] Das Sarma S, Adam S, Hwang E H et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 83, 407(2011).

    [22] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [23] Novoselov K S. Nobel lecture: Graphene in the flatland[J]. Reviews of Modern Physics, 83, 837(2011).

    [24] Geim A K. Nobel Lecture: Random walk to graphene[J]. Reviews of Modern Physics, 83, 851(2011).

    [25] Mak K F, Lee C, Hone J et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010). http://pubs.acs.org/servlet/linkout?suffix=ref130/cit130&dbid=8&doi=10.1021%2Facsnano.5b05040&key=21230799

    [26] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010). http://www.ncbi.nlm.nih.gov/pubmed/20229981

    [27] Lee Y H, Yu L, Wang H et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces[J]. Nano Letters, 13, 1852-1857(2013). http://europepmc.org/abstract/med/23506011

    [28] Najmaei S, Liu Z, Zhou W et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 12, 754-759(2013). http://www.ncbi.nlm.nih.gov/pubmed/23749265

    [29] Huang P Y, Chenet D A et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 12, 554-561(2013).

    [30] Liu F, Wu W J, Bai Y S et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J]. Science, 367, 903-906(2020). http://www.researchgate.net/publication/339402127_Disassembling_2D_van_der_Waals_crystals_into_macroscopic_monolayers_and_reassembling_into_artificial_lattices

    [31] Huang Y, Pan Y H, Yang R et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nature Communications, 11, 2453(2020). http://www.nature.com/articles/s41467-020-16266-w

    [32] Wang G, Chernikov A, Glazov M M et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides[J]. Reviews of Modern Physics, 90, 021001(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=eac2818fa079007700ee738cbcfb0db7

    [33] Schaibley J R, Yu H Y, Clark G et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 1, 1-15(2016). http://www.nature.com/articles/natrevmats201655

    [34] Mak K F, Xiao D, Shan J. Light-valley interactions in 2D semiconductors[J]. Nature Photonics, 12, 451-460(2018). http://www.nature.com/articles/s41566-018-0204-6/

    [35] Xu X D, Yao W, Xiao D et al. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nature Physics, 10, 343-350(2014).

    [36] Chernikov A, Berkelbach T C, Hill H M et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 113, 076802(2014).

    [37] Ye Z L, Cao T. O'Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 513, 214-218(2014).

    [38] Hill H M, Rigosi A F, Roquelet C et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy[J]. Nano Letters, 15, 2992-2997(2015). http://pubs.acs.org/doi/abs/10.1021/nl504868p

    [39] Li Y L[M]. Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, 33-43(2015).

    [40] Mak K F, He K L, Shan J et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 7, 494-498(2012). http://www.ncbi.nlm.nih.gov/pubmed/22706698

    [41] Zeng H, Dai J, Yao W et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 7, 490-493(2012).

    [42] Cao T, Wang G, Han W et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 3, 887(2012).

    [43] Malard L M, Alencar T V. Barboza A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 87, 201401(2013).

    [44] Janisch C, Wang Y, Ma D et al. Extraordinary Second Harmonic Generation in tungsten disulfide monolayers[J]. Scientific Reports, 4, 5530(2014). http://www.ncbi.nlm.nih.gov/pubmed/24984953

    [45] Yin X B, Ye Z L, Chenet D A et al. Edge nonlinear optics on a MoS2 atomic monolayer[J]. Science, 344, 488-490(2014). http://meetings.aps.org/Meeting/MAR14/Event/208645

    [46] Wang G, Marie X, Gerber I et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 114, 097403(2015).

    [47] Seyler K L, Schaibley J R, Gong P et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor[J]. Nature Nanotechnology, 10, 407-411(2015). http://europepmc.org/abstract/MED/25895004

    [48] Zhao M, Ye Z L, Suzuki R et al. Atomically phase-matched second-harmonic generation in a 2D crystal[J]. Light: Science & Applications, 5, e16131(2016).

    [49] Xiao J, Ye Z L, Wang Y et al. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2[J]. Light: Science & Applications, 4, e366(2015). http://www.nature.com/articles/lsa2015139

    [50] Yu H, Wang Y, Tong Q et al. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers[J]. Physical Review Letters, 115, 187002(2015). http://www.ncbi.nlm.nih.gov/pubmed/26565491

    [51] Gong P, Yu H Y, Wang Y et al. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials[J]. Physical Review B, 95, 125420(2017). http://dx.doi.org/10.1103/physrevb.95.125420

    [52] Hu G W, Hong X M, Wang K et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nature Photonics, 13, 467-472(2019).

    [53] Chen J W, Wang K, Long H et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 18, 1344-1350(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=1da32c7b05fe66059614b3700c3c35e5

    [54] He Y M, Clark G, Schaibley J R et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 10, 497-502(2015).

    [55] Srivastava A, Sidler M, Allain A V et al. Optically active quantum dots in monolayer WSe2[J]. Nature Nanotechnology, 10, 491-496(2015). http://www.nature.com/nnano/journal/vaop/ncurrent/nnano.2015.60/metrics

    [56] Koperski M, Nogajewski K, Arora A et al. Single photon emitters in exfoliated WSe2 structures[J]. Nature Nanotechnology, 10, 503-506(2015). http://europepmc.org/abstract/MED/25938573

    [57] Chakraborty C, Kinnischtzke L, Goodfellow K M et al. Voltage-controlled quantum light from an atomically thin semiconductor[J]. Nature Nanotechnology, 10, 507-511(2015). http://www.nature.com/articles/nnano.2015.79

    [58] Tonndorf P, Schmidt R, Schneider R et al. Single-photon emission from localized excitons in an atomically thin semiconductor[J]. Optica, 2, 347-352(2015). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-2-4-347

    [59] Tran T T, Bray K, Ford M J et al. Quantum emission from hexagonal boron nitride monolayers[J]. Nature Nanotechnology, 11, 37-41(2016). http://d.wanfangdata.com.cn/periodical/834e0a689e7b994aa2f823333c5225ab

    [60] Chen X T, Lu X, Dubey S et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2[J]. Nature Physics, 15, 221-227(2019).

    [61] Lu X, Chen X, Dubey S et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots[J]. Nature Nanotechnology, 14, 426-431(2019). http://www.ncbi.nlm.nih.gov/pubmed/30833693

    [62] Gottscholl A, Kianinia M, Soltamov V et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature[J]. Nature Materials, 19, 540-545(2020). http://www.nature.com/articles/s41563-020-0619-6

    [63] Hayee F, Yu L, Zhang J L et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy[J]. Nature Materials, 19, 534-539(2020). http://www.nature.com/articles/s41563-020-0616-9

    [64] Branny A, Kumar S, Proux R et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor[J]. Nature Communications, 8, 15053(2017). http://europepmc.org/articles/PMC5458118

    [65] Palacios-Berraquero C, Kara D M, Montblanch A R et al. Large-scale quantum-emitter arrays in atomically thin semiconductors[J]. Nature Communications, 8, 15093(2017). http://www.nature.com/articles/ncomms15093

    [66] Proscia N V, Shotan Z, Jayakumar H et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride[J]. Optica, 5, 1128-1134(2018). http://arxiv.org/abs/1712.01352?context=physics

    [67] Grosso G, Moon H, Lienhard B et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride[J]. Nature Communications, 8, 705(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5615041/

    [68] Klein J, Lorke M, Florian M et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation[J]. Nature Communications, 10, 2755(2019). http://www.nature.com/articles/s41467-019-10632-z

    [69] Iff O, Lundt N, Betzold S et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities[J]. Optics Express, 26, 25944-25951(2018). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-20-25944

    [70] Liu X L, Hersam M C. 2D materials for quantum information science[J]. Nature Reviews Materials, 4, 669-684(2019). http://www.nature.com/articles/s41578-019-0136-x

    [71] Xiao J, Zhao M, Wang Y et al. Excitons in atomically thin 2D semiconductors and their applications[J]. Nanophotonics, 6, 1309-1328(2017).

    [72] Mak K F, He K L, Lee C et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 12, 207-211(2013). http://www.nature.com/articles/nmat3505

    [73] Ross J S, Wu S F, Yu H Y et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nature Communications, 4, 1474(2013). http://www.ncbi.nlm.nih.gov/pubmed/23403575/

    [74] You Y M, Zhang X X, Berkelbach T C et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 11, 477-481(2015). http://www.nature.com/nphys/journal/v11/n6/full/nphys3324.html

    [75] Li Z, Wang T, Lu Z et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2[J]. Nature Communications, 9, 3719(2018). http://www.ncbi.nlm.nih.gov/pubmed/30213927

    [76] Ye Z L, Waldecker L, Ma E Y et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers[J]. Nature Communications, 9, 3718(2018). http://www.ncbi.nlm.nih.gov/pubmed/30214026

    [77] Barbone M, Montblanch R P, Kara D M et al. Charge-tuneable biexciton complexes in monolayer WSe2[J]. Nature Communications, 9, 3721(2018). http://arxiv.org/abs/1805.04950

    [78] Chen S Y, Goldstein T, Taniguchi T et al. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor[J]. Nature Communications, 9, 3717(2018). http://www.ncbi.nlm.nih.gov/pubmed/30214001

    [79] Wang Y, Xiao J, Zhu H et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping[J]. Nature, 550, 487-491(2017). http://www.ncbi.nlm.nih.gov/pubmed/29019982

    [80] Aivazian G, Gong Z R, Jones A M et al. Magnetic control of valley pseudospin in monolayer WSe2[J]. Nature Physics, 11, 148-152(2015). http://www.nature.com/articles/nphys3201

    [81] Srivastava A, Sidler M, Allain A V et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2[J]. Nature Physics, 11, 141-147(2015). http://www.nature.com/nphys/journal/v11/n2/full/nphys3203.html

    [82] Li Y L, Ludwig J, Low T et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2[J]. Physical Review Letters, 113, 266804(2014). http://meetings.aps.org/Meeting/MAR15/Session/M2.2

    [83] Wang G, Marie X, Liu B L et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers[J]. Physical Review Letters, 117, 187401(2016). http://www.ncbi.nlm.nih.gov/pubmed/27835018

    [84] Schmidt R, Arora A, Plechinger G et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2[J]. Physical Review Letters, 117, 077402(2016). http://europepmc.org/abstract/MED/27563997

    [85] Lyons T P, Dufferwiel S, Brooks M et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2[J]. Nature Communications, 10, 2330(2019).

    [86] Stevens C E, Paul J, Cox T et al. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields[J]. Nature Communications, 9, 3720(2018). http://www.nature.com/articles/s41467-018-05643-1

    [87] Nagler P, Ballottin M V, Mitioglu A A et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2[J]. Physical Review Letters, 121, 057402(2018). http://arxiv.org/abs/1801.09255v1

    [88] Stier A V, Wilson N P, Velizhanin K A et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor[J]. Physical Review Letters, 120, 057405(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111834061.html

    [89] Goryca M, Li J, Stier A V et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields[J]. Nature Communications, 10, 4172(2019). http://www.nature.com/articles/s41467-019-12180-y

    [90] Zhang X X, Cao T, Lu Z et al. Magnetic brightening and control of dark excitons in monolayer WSe2[J]. Nature Nanotechnology, 12, 883-888(2017). http://www.ncbi.nlm.nih.gov/pubmed/28650442

    [91] Molas M R, Faugeras C, Slobodeniuk A O et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides[J]. 2D Materials, 4, 021003(2017). http://arxiv.org/abs/1612.02867

    [92] Sie E J. McIver J W, Lee Y H, et al. Valley-selective optical Stark effect in monolayer WS2[J]. Nature Materials, 14, 290-294(2015).

    [93] Kim J, Hong X, Jin C et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers[J]. Science, 346, 1205-1208(2014). http://europepmc.org/abstract/med/25477455

    [94] Ye Z L, Sun D Z, Heinz T F. Optical manipulation of valley pseudospin[J]. Nature Physics, 13, 26-29(2017). http://www.nature.com/abstractpagefinder/10.1038/nphys3891

    [95] Yong C K. Utama M I B, Ong C S, et al. Valley-dependent exciton fine structure and Autler-Townes doublets from Berry phases in monolayer MoSe2[J]. Nature Materials, 18, 1065-1070(2019).

    [96] Sie E J, Lui C H, Lee Y H et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2[J]. Science, 355, 1066-1069(2017).

    [97] Yong C K, Horng J, Shen Y X et al. Biexcitonic optical Stark effects in monolayer molybdenum diselenide[J]. Nature Physics, 14, 1092-1096(2018). http://www.nature.com/articles/s41567-018-0216-7

    [98] Rivera P, Yu H, Seyler K L et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 13, 1004-1015(2018). http://www.nature.com/articles/s41565-018-0193-0

    [99] Jin C, Ma E Y, Karni O et al. Ultrafast dynamics in van der Waals heterostructures[J]. Nature Nanotechnology, 13, 994-1003(2018). http://d.wanfangdata.com.cn/periodical/c78857806d8d3f685a79811f361a1a6f

    [100] Geim A K. Grigorieva I V. van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [101] Rivera P, Schaibley J R, Jones A M et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications, 6, 6242(2015). http://www.ncbi.nlm.nih.gov/pubmed/25708612

    [102] Hong X, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014). http://europepmc.org/abstract/MED/25150718

    [103] Rivera P, Seyler K L, Yu H et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure[J]. Science, 351, 688-691(2016).

    [104] Fogler M M, Butov L V, Novoselov K S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures[J]. Nature Communications, 5, 4555(2014). http://www.nature.com/articles/ncomms5555

    [105] Wang Z F, Rhodes D A, Watanabe K et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers[J]. Nature, 574, 76-80(2019). http://www.nature.com/articles/s41586-019-1591-7

    [106] Yu H Y, Liu G B, Tang J J et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices[J]. Science Advances, 3, e1701696(2017). http://arxiv.org/abs/1710.07015v1

    [107] Wu F, Lovorn T. MacDonald A H. Topological exciton bands in moiré heterojunctions[J]. Physical Review Letters, 118, 147401(2017).

    [108] Jin C, Regan E C, Yan A et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 567, 76-80(2019). http://www.nature.com/articles/s41586-019-0976-y

    [109] Seyler K L, Rivera P, Yu H et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 567, 66-70(2019).

    [110] Tran K, Moody G, Wu F et al. Evidence for moiré excitons in van der Waals heterostructures[J]. Nature, 567, 71-75(2019). http://www.nature.com/articles/s41586-019-0975-z

    [111] Alexeev E M. Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures[J]. Nature, 567, 81-86(2019).

    [112] Yuan L, Zheng B Y, Kunstmann J et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers[J]. Nature Materials, 19, 617-623(2020). http://www.nature.com/articles/s41563-020-0670-3

    [113] Duan X, Gu Y, Gong Q H. Micro/nanoscale cavity quantum electrodynamics[J]. Physics, 48, 367-375(2019).

    [114] Yu X T, Yuan Y F, Xu J H et al. Strong coupling in microcavity structures: Principle, design, and practical application[J]. Laser & Photonics Reviews, 13, 1800219(2019).

    [115] Zhang S P, Xu H X. Light-matter interaction in microcavity or nanocavity micro/nanoscale cavity quantum electrodynamics[J]. Physics, 49, 156-163(2020).

    [116] Reithmaier J P, Sęk G, Löffler A et al. Strong coupling in a single quantum dot-semiconductor microcavity system[J]. Nature, 432, 197-200(2004). http://www.europepmc.org/abstract/MED/15538362

    [117] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [118] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronicsconfined electrons and photons[M]. ∥Confined Electrons and Photons. New York: Springer(1995).

    [119] Yoshie T, Scherer A, Hendrickson J et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 432, 200-203(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000010000021000031000001&idtype=cvips&gifs=Yes

    [120] Hsu C W, Zhen B, Douglas Stone A et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016). http://www.nature.com/articles/natrevmats201648?proof=t

    [121] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [122] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [123] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019). http://www.researchgate.net/publication/336745055_Topologically_enabled_ultrahigh-Q_guided_resonances_robust_to_out-of-plane_scattering

    [124] Yin X F, Jin J C. Solja i M, et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 580, 467-471(2020). http://www.nature.com/articles/s41586-020-2181-4

    [125] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014). http://www.ncbi.nlm.nih.gov/pubmed/25554906

    [126] Xu H X, Bjerneld E J, Käll M et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 83, 4357(1999).

    [127] Xu H, Aizpurua J. Kall M, at al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62, 4318-4324(2000).

    [128] Chikkaraddy R, de Nijs B, Benz F et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=9ba341ee7b92de09aa0d6904fb58d3b8

    [129] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014). http://www.nature.com/articles/nphoton.2014.228

    [130] Baumberg J J, Aizpurua J, Mikkelsen M H et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 18, 668-678(2019). http://www.nature.com/articles/s41563-019-0290-y

    [131] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 82, 1489(2010). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT06000002000006000001000001&idtype=cvips&gifs=Yes

    [132] Andreani L C, Panzarini G, Gérard J M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory[J]. Physical Review B, 60, 13276(1999).

    [133] Houdré R. Early stages of continuous wave experiments on cavity-polaritons[J]. Physica Status Solidi (b), 242, 2167-2196(2005). http://onlinelibrary.wiley.com/doi/10.1002/9783527610150.ch3/summary

    [134] Savona V, Andreani L C, Schwendimann P et al. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes[J]. Solid State Communications, 93, 733-739(1995). http://www.sciencedirect.com/science/article/pii/0038109894008655

    [135] Zhang L, Gogna R, Burg W et al. Photonic-crystal exciton-polaritons in monolayer semiconductors[J]. Nature Communications, 9, 713(2018). http://europepmc.org/articles/PMC5818602/

    [136] Frisk Kockum A. Miranowicz A, de Liberato S, et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 1, 19-40(2019).

    [137] Forn-Díaz P, Lamata L, Rico E et al. Ultrastrong coupling regimes of light-matter interaction[J]. Reviews of Modern Physics, 91, 025005(2019). http://arxiv.org/abs/1804.09275

    [138] Purcell E M. Spontaneous emission probabilities at radio frequencies[M]. ∥Confined Electrons and Photons. New York: Springer(1995).

    [139] Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates[J]. Nature Physics, 10, 803-813(2014).

    [140] Chervy T, Azzini S, Lorchat E et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons[J]. ACS Photonics, 5, 1281-1287(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b01032

    [141] Gan X, Gao Y, Fai Mak K et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 103, 181119(2013). http://scitation.aip.org/content/aip/journal/apl/103/18/10.1063/1.4826679

    [142] Wu S F, Buckley S, Jones A M et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 1, 011001(2014). http://meetings.aps.org/Meeting/MAR14/Session/M21.11

    [143] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [144] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [145] Salehzadeh O, Djavid M, Tran N H et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature[J]. Nano Letters, 15, 5302-5306(2015). http://www.ncbi.nlm.nih.gov/pubmed/26214363

    [146] Li Y, Zhang J, Huang D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017). http://www.nature.com/articles/nnano.2017.128

    [147] Shang J Z, Cong C X, Wang Z L et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers[J]. Nature Communications, 8, 543(2017). http://www.ncbi.nlm.nih.gov/pubmed/28912420

    [148] Reeves L, Wang Y, Krauss T F. 2D material microcavity light emitters: To lase or not to lase?[J]. Advanced Optical Materials, 6, 1800272(2018).

    [149] Zhang Y X, Chen W, Fu T et al. Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: Determination of ultrafast decay rates in nanometer dimension[J]. Nano Letters, 19, 6284-6291(2019).

    [150] Chen W, Zhang S, Kang M et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe[J]. Light, Science & Applications, 7, 56(2018).

    [151] Sun J W, Hu H T, Pan D et al. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity[J]. Nano Letters, 20, 4953-4959(2020). http://www.researchgate.net/publication/342430782_Selectively_Depopulating_Valley-Polarized_Excitons_in_Monolayer_MoS_2_by_Local_Chirality_in_Single_Plasmonic_Nanocavity

    [152] Tran T T, Wang D Q, Xu Z Q et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 17, 2634-2639(2017).

    [153] Caldwell J D, Aharonovich I, Cassabois G et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 4, 552-567(2019). http://www.nature.com/articles/s41578-019-0124-1

    [154] Kim S, Fröch J E, Christian J et al. Photonic crystal cavities from hexagonal boron nitride[J]. Nature Communications, 9, 2623(2018). http://europepmc.org/abstract/MED/29976925

    [155] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015). http://www.nature.com/articles/nphoton.2014.304

    [156] Dufferwiel S, Schwarz S, Withers F et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 6, 8579(2015). http://go.nature.com/CFAD2l

    [157] Król M, Lekenta K, Mirek R et al. Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity[J]. Nanoscale, 11, 9574-9579(2019). http://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr02038a/unauth

    [158] Lundt N, Klembt S, Cherotchenko E et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer[J]. Nature Communications, 7, 13328(2016). http://europepmc.org/articles/PMC5095560

    [159] Flatten L C, He Z, Coles D M et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 6, 33134(2016). http://www.nature.com/articles/srep33134

    [160] Sun Z, Gu J, Ghazaryan A et al. Optical control of room-temperature valley polaritons[J]. Nature Photonics, 11, 491-496(2017).

    [161] Dufferwiel S, Lyons T P, Solnyshkov D D et al. Valley-addressable polaritons in atomically thin semiconductors[J]. Nature Photonics, 11, 497-501(2017). http://www.nature.com/articles/nphoton.2017.125

    [162] Chen Y J, Cain J D, Stanev T K et al. Valley-polarized exciton-polaritons in a monolayer semiconductor[J]. Nature Photonics, 11, 431-435(2017).

    [163] Lundt N, Stoll S, Nagler P et al. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature[J]. Physical Review B, 96, 241403(2017). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.241403

    [164] Qiu L, Chakraborty C, Dhara S et al. Room-temperature valley coherence in a polaritonic system[J]. Nature Communications, 10, 1513(2019). http://www.ncbi.nlm.nih.gov/pubmed/30944335

    [165] Dufferwiel S, Lyons T P, Solnyshkov D D et al. Valley coherent exciton-polaritons in a monolayer semiconductor[J]. Nature Communications, 9, 4797(2018). http://www.nature.com/articles/s41467-018-07249-z

    [166] Liu X Z, Bao W, Li Q W et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 119, 027403(2017). http://www.ncbi.nlm.nih.gov/pubmed/28753353

    [167] Liu X Z, Yi J, Li Q W et al. Nonlinear optics at excited states of exciton polaritons in two-dimensional atomic crystals[J]. Nano Letters, 20, 1676-1685(2020). http://www.researchgate.net/publication/338908879_Nonlinear_Optics_at_Excited_States_of_Exciton_Polaritons_in_Two-Dimensional_Atomic_Crystals

    [168] Lundt N, Dusanowski Ł, Sedov E et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor[J]. Nature Nanotechnology, 14, 770-775(2019). http://www.nature.com/articles/s41565-019-0492-0

    [169] Chakraborty B, Gu J, Sun Z et al. Control of strong light-matter interaction in monolayer WS2 through electric field gating[J]. Nano Letters, 18, 6455-6460(2018). http://pubs.acs.org/doi/10.1021/acs.nanolett.8b02932

    [170] Sidler M, Back P, Cotlet O et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors[J]. Nature Physics, 13, 255-261(2017). http://www.nature.com/articles/nphys3949

    [171] Gu J, Chakraborty B, Khatoniar M et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 14, 1024-1028(2019). http://arxiv.org/abs/1905.12227

    [172] Pelton M, Storm S D, Leng H X. Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting[J]. Nanoscale, 11, 14540-14552(2019). http://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr05044b/unauth

    [173] Zheng D, Zhang S P, Deng Q et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2[J]. Nano Letters, 17, 3809-3814(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=cbb3eb96e04b633f912e3161fd07ea34

    [174] Kleemann M E, Chikkaraddy R, Alexeev E M et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature[J]. Nature Communications, 8, 1296(2017). http://www.researchgate.net/publication/332245468_Strong-coupling_of_WSe2_in_ultra-compact_plasmonic_nanocavities_at_room_temperature

    [175] Wen J X, Wang H, Wang W L et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals[J]. Nano Letters, 17, 4689-4697(2017). http://www.ncbi.nlm.nih.gov/pubmed/28665614

    [176] Qin J, Chen Y H, Zhang Z P et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions[J]. Physical Review Letters, 124, 063902(2020). http://www.researchgate.net/publication/339251521_Revealing_Strong_Plasmon-Exciton_Coupling_between_Nanogap_Resonators_and_Two-Dimensional_Semiconductors_at_Ambient_Conditions/download

    [177] Han X B, Wang K, Xing X Y et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature[J]. ACS Photonics, 5, 3970-3976(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.8b00931

    [178] Wang S J, Li S L, Chervy T et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 16, 4368-4374(2016). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEhFBcnhpdjAwMDAwMTE4MDY1NhoIeGkycnFsd2g%3D

    [179] Liu W J, Wang Y H, Naylor C H et al. Understanding the different exciton-plasmon coupling regimes in two-dimensional semiconductors coupled with plasmonic lattices: A combined experimental and unified equation of motion approach[J]. ACS Photonics, 5, 192-204(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b00672

    [180] Liu W J, Lee B, Naylor C H et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice[J]. Nano Letters, 16, 1262-1269(2016). http://www.onacademic.com/detail/journal_1000038549693910_ed17.html

    [181] Sun L Y, Wang C Y, Krasnok A et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array[J]. Nature Photonics, 13, 180-184(2019). http://www.nature.com/articles/s41566-019-0348-z

    [182] Gong S H, Alpeggiani F, Sciacca B et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling[J]. Science, 359, 443-447(2018).

    [183] Fábio B, Antonio F, Soroush H et al. Interacting polariton fluids in a monolayer of tungsten disulfide[J]. Nature Nanotechnology, 13, 906-909(2018). http://www.nature.com/articles/s41565-018-0219-7

    [184] Paik E Y, Zhang L, Burg G W et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 576, 80-84(2019). http://www.nature.com/articles/s41586-019-1779-x

    [185] Liu Y D, Fang H L, Rasmita A et al. 5(4): eaav4506(2019).

    [186] Yu H Y, Yao W. Electrically tunable topological transport of moiré polaritons[J]. Science Bulletin, 65, 1555-1562(2020).

    [187] Koshelev K L, Sychev S K, Sadrieva Z F et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum[J]. Physical Review B, 98, 161113(2018). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.161113

    Xiaoze Liu, Xinyuan Zhang, Shunping Zhang, Zhiqiang Guan, Hongxing Xu. Light-Matter Coupling of Two-Dimensional Semiconductors in Micro-Nano Optical Cavities[J]. Acta Optica Sinica, 2021, 41(8): 0823003
    Download Citation