• Photonics Research
  • Vol. 7, Issue 4, 464 (2019)
Chang-Hwan Yi1, Julius Kullig1、2, Martina Hentschel2, and Jan Wiersig1、*
Author Affiliations
  • 1Institut für Physik, Otto-von-Guericke-Universit?t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
  • 2Institut für Physik, Technische Universit?t Ilmenau, D-98693 Ilmenau, Germany
  • show less
    DOI: 10.1364/PRJ.7.000464 Cite this Article Set citation alerts
    Chang-Hwan Yi, Julius Kullig, Martina Hentschel, Jan Wiersig. Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks[J]. Photonics Research, 2019, 7(4): 464 Copy Citation Text show less
    References

    [1] T. Kato. Perturbation Theory for Linear Operators(1966).

    [2] W. D. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 61, 929-932(2000).

    [3] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [4] H. Cartarius, J. Main, G. Wunner. Exceptional points in atomic spectra. Phys. Rev. Lett., 99, 173003(2007).

    [5] B. Alfassi, O. Peleg, N. Moiseyev, M. Segev. Diverging Rabi oscillations in subwavelength photonic lattices. Phys. Rev. Lett., 106, 073901(2011).

    [6] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, S. Rotter. Pump-induced exceptional points in lasers. Phys. Rev. Lett., 108, 173901(2012).

    [7] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional points. Nat. Commun., 5, 4034(2014).

    [8] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).

    [9] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).

    [10] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, A. Richter. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett., 90, 034101(2003).

    [11] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Nat. Acad. Sci. USA, 113, 6845-6850(2016).

    [12] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [13] J. Zhu, Ş. K. Özdemir, L. He, L. Yang. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express, 18, 23535-23543(2010).

    [14] S. Richter, T. Michalsky, C. Sturm, B. Rosenow, M. Grundmann, R. Schmidt-Grund. Exceptional points in anisotropic planar microcavities. Phys. Rev. A, 95, 023836(2017).

    [15] N. Zhang, S. Liu, K. Wang, G. Z. L. Meng, N. Yi, S. Xiao, Q. H. Song. Single nanoparticle detection using far-field emission of photonic molecule around an exceptional point. Sci. Rep., 5, 11912(2015).

    [16] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [17] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [18] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [19] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [20] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [21] J.-W. Ryu, S.-Y. Lee. Quasiscarred modes and their branching behaviour at an exceptional point. Phys. Rev. E, 83, 015203(2011).

    [22] J. Kullig, J. Wiersig. Perturbation theory for asymmetric deformed microdisk cavities. Phys. Rev. A, 94, 043850(2016).

    [23] C.-H. Yi, J. Kullig, J. Wiersig. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett., 120, 093902(2018).

    [24] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 5, 247-271(2011).

    [25] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 84, 063828(2011).

    [26] R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, C. Schmit. Circular dielectric cavity and its deformations. Phys. Rev. A, 77, 013804(2008).

    [27] E. Bogomolny, R. Dubertrand, C. Schmit. Trace formula for dielectric cavities: general properties. Phys. Rev. E, 78, 056202(2008).

    [28] C. P. Dettmann, G. V. Morozov, M. Sieber, H. Waalkens. Internal and external resonances of dielectric disks. Euro. Lett., 87, 34003(2009).

    [29] J. Cho, I. Kim, S. Rim, G.-S. Yim, C.-M. Kim. Outer resonances and effective potential analogy in two-dimensional dielectric cavities. Phys. Lett. A, 374, 1893-1899(2010).

    [30] J. Cho, S. Rim, C.-M. Kim. Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization. Phys. Rev. A, 83, 043810(2011).

    [31] G. R. Fowles. Introduction to Modern Optics(1975).

    [32] E. Bogomolny, R. Dubertrand. Trace formula for dielectric cavities. III. TE modes. Phys. Rev. E, 86, 026202(2012).

    [33] M. Hentschel, H. Schomerus. Fresnel laws at curved dielectric interfaces of microresonators. Phys. Rev. E, 65, 045603(2002).

    [34] Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, K. An. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett., 104, 153601(2010).

    [35] S. V. Boriskina, T. M. Benson, P. D. Sewell, A. I. Nosich. Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures. IEEE J. Sel. Top. Quantum Electron., 12, 1175-1182(2006).

    [36] J. Kullig, J. Wiersig. Q spoiling in deformed optical microdisks due to resonance-assisted tunneling. Phys. Rev. E, 94, 022202(2016).

    [37] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 5, 53-60(2003).

    [38] J. Wiersig. Perturbative approach to optical microdisks with a local boundary deformation. Phys. Rev. A, 85, 063838(2012).

    [39] J. W. Brown, R. V. Churchill. Complex Variables and Applications(2009).

    [40] D. Aspnes, S. Kelso, R. Logan, R. Bhat. Optical properties of AlxGa1-xAs. J. Appl. Phys., 60, 754-767(1986).

    [41] S. Adachi. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyPy-1. J. Appl. Phys., 66, 6030-6040(1989).

    [42] S. Bittner, B. Dietz, M. Miski-Oglu, P. O. Iriarte, A. Richter, F. Schäfer. Experimental test of a two-dimensional approximation for dielectric microcavities. Phys. Rev. A, 80, 023825(2009).

    [43] M. Lebental, C. Djellali, N. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny. Inferring periodic orbits from spectra of simply shaped microlasers. Phys. Rev. A, 76, 023830(2007).

    [44] M. Benyoucef, J.-B. Shim, J. Wiersig, O. Schmidt. Quality-factor enhancement of supermodes in coupled microdisks. Opt. Lett., 36, 1317-1319(2011).

    [45] F. Vollmer, L. Yang. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [46] B. R. Bennett, R. A. Soref, J. A. Del Alamo. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron., 26, 113-122(1990).

    CLP Journals

    [1] Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction[J]. Photonics Research, 2019, 7(12): 1440

    [2] Jinhyeok Ryu, Sunjae Gwak, Jaewon Kim, Hyeon-Hye Yu, Ji-Hwan Kim, Ji-Won Lee, Chang-Hwan Yi, Chil-Min Kim. Hybridization of different types of exceptional points[J]. Photonics Research, 2019, 7(12): 1473

    [3] Yan-Jun Qian, Qi-Tao Cao, Shuai Wan, Yu-Zhong Gu, Li-Kun Chen, Chun-Hua Dong, Qinghai Song, Qihuang Gong, Yun-Feng Xiao. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity[J]. Photonics Research, 2021, 9(3): 364

    Chang-Hwan Yi, Julius Kullig, Martina Hentschel, Jan Wiersig. Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks[J]. Photonics Research, 2019, 7(4): 464
    Download Citation