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Open quantum and wave systems can exhibit non-Hermitian degeneracies called exceptional points, where both
the eigenvalues and the corresponding eigenstates coalesce. Previously, such exceptional points have been inves-
tigated in dielectric microcavities in terms of optical modes which are well confined inside the cavity. However,
beside these so-called “internal modes” with a relatively high quality factor, there exists another kind of mode
called “external modes,” which have a large decay rate and almost zero intensity inside the cavity. In the present
paper, we demonstrate the physical significance of the external modes via the occurrence of exceptional points of
internal–external mode pairs for transverse electric polarization. Our numerical studies show that these excep-
tional points can be achieved by either a boundary deformation of the microdisk or by introducing absorption
into a circular cavity. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000464

1. INTRODUCTION

Openness is a generic property of realistic quantum and wave
systems. Hence, their dynamics is in general described by a
non-Hermitian Hamiltonian with complex eigenvalues. An
interesting feature of this non-Hermitian physics is the excep-
tional point (EP) in parameter space where both the eigenvalues
(complex frequencies) and the corresponding eigenstates
(modes) coalesce [1–3]. So far, EPs have been studied both
theoretically and experimentally in various research fields such
as hydrogen atoms [4], photonic lattices [5], microlasers [6,7],
microwave resonators [8–10], and optical microcavities [11–14].
One of the fascinating applications of EPs is an enhancement of
the sensitivity of sensors [15–19].

Optical microdisk cavities are ideal model systems to study
non-Hermitian physics [20]. In recent years, it was demon-
strated that EPs in microcavities can be caused by several mech-
anisms, e.g., by boundary deformations [12,21–24] or external
perturbations like nanoscatterers or nanofiber tips [11,13,25].
However, in these studies, the involved modes are always so-
called internal modes whose intensity is well confined inside
the cavity, resulting in a small decay rate, i.e., a large Q-factor.
In the language of formal quantum mechanics, they are called
Feshbach resonances [26–28].

Along with the internal modes, there is another class of
optical modes known as “external modes,” which have a large
decay rate and almost no intensity inside the cavity. The
internal and external modes have been classified in previous

studies [28–30] according to their behavior in the limit of
infinite refractive index n; i.e., in the limit of vanishing open-
ness of the system. In this limit, the external modes remain
unbound and are therefore referred to as “shape resonances”
[26–28]. The internal modes, however, can become bound
states with real-valued frequency in this limit.

In spite of the pioneer works proving the interactions
between internal and external modes [30], there have been
no investigations conceiving the possibility of EPs associated
with external modes. Therefore, the aim of this paper is to re-
veal the existence of such EPs involving internal and external
mode pairs. To demonstrate this, we introduce two kinds of
systematic perturbations of a circular cavity: (i) a deformation
of the cavity’s boundary, and (ii) an absorbing material.

The paper is organized as follows. In Section 2, the optical
modes of the dielectric microdisk cavity are briefly explained. In
Section 3, a transition between the strong and weak coupling
regime in the circular cavity is analyzed. Section 4 demonstrates
EPs through the variation of a deformation parameter. In
Section 5, absorption is used to generate EPs in the circular
cavity. Section 6 summarizes and concludes the paper.

2. MODES IN THE DIELECTRIC MICRODISK

For the convenience of the reader, we repeat some known facts
of optical modes in quasi-two-dimensional microdisks [20].
The damped time-harmonic solutions of Maxwell’s equations
in the dielectric microdisk cavity with effective refractive index
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n and Sommerfeld’s outgoing-wave condition at infinity are the
optical modes. On the cavity boundary interfacing the homo-
geneous refractive index regions, the two different polarization
fields, transverse magnetic fTM: Ez�x, y, t� � Re�ψ�x, y�e−iωt �g
and transverse electric fTE: Hz�x, y, t� � Re�ψ�x, y�e−iωt �g,
with resonant frequency ω, satisfy different boundary condi-
tions; ∂νψ (1∕n2∂νψ ) is continuous for TM (TE) polarization,
while ψ for both polarizations is continuous across the
boundary. Here, Ez �Hz� is the z-component of the electric
(magnetic) field and ∂ν is the normal derivative at a given
boundary point.

Through the separation of variables in polar coordinates, the
optical modes in the circular cavity with radius R are given by a
dimensionless frequency kR � ωR∕c ∈ C (where c is the speed
of light in vacuum), which are the solutions of the radial
equation [26]

η
J 0m
Jm

�nkR� −H
0
m

Hm
�kR� � 0, (1)

where J , J 0, H , and H 0 are the Bessel function, its derivative,
the Hankel function of the first kind, and its derivative, respec-
tively, and η � n (1∕n) for TM (TE) polarization. Note that
the obtained modes are specified by an azimuthal mode num-
ber m [i.e., the order of Bessel functions in Eq. (1)] and a radial
mode number l labeling the solutions of Eq. (1) for fixed m.
Note also that the modes given by the solutions of Eq. (1) are
doubly degenerated for m ≠ 0 since they are invariant under
the change of m and −m.

Figure 1 shows the optical modes as the solution of Eq. (1)
for TE polarization with refractive index n � 3.14. Among the
modes in the figure, the internal and external modes are clearly

discerned by the imaginary part of the frequency [see Fig. 1(b)]:
while the internal modes have small values of jIm�kR�j < 1,
the external modes have jIm�kR�j > 1. In between these two
distinct mode groups, we can observe an additional group of
special external modes with jIm�kR�j ≈ 1 existing only for
TE polarization. These modes are attributed to the Brewster
angle [31,32], and thus we call them Brewster modes with their
frequencies kBmR. A perfect transmittance at this Brewster angle
(but see [33] for the curved interface correction) results in ro-
bust coupling of internal–external modes [30]. In order to take
advantage of this coupling, we focus on the TE polarization in
the present paper. We emphasize that the radial mode number l
should be treated carefully when discerning internal and exter-
nal modes; while in the former case, l counts the number of
maxima of the mode intensity along the radial direction inside
the cavity, and l of the external modes has no corresponding
physical interpretation [28]. Thus, whenever we specify the
mode numbers �l ,m�, we refer to internal modes.

3. WEAK AND STRONG COUPLING OF MODES
IN CIRCULAR CAVITIES

In this section, we consider a circular cavity with a real-valued
refractive index n. For the internal modes, nRe�kmR� is approx-
imately constant. Thus, if n changes, the frequency km needs
to shift accordingly. Contrarily, the external modes correspond-
ing to the Brewster angle fulfill the relation Re�kBmR� ≈
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n−2

p
[26,32]. Hence, the derivatives of the frequencies

with respect to n read

dRe�kmR�
dn

∼ −
1

n2
, (2a)

dRe�kBmR�
dn

∼ −
1

n2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p : (2b)

Equations (2a) and (2b) indicate that Re�kmR� of the internal
modes decreases more rapidly than Re�kBmR� as n increases.
Hence, Re�kBmR� with a fixed azimuthal mode number m suc-
cessively degenerates with different values of Re�kmR� having
higher values of l . We define the degree of degeneracy in terms
of the real part of the frequencies:

Δ−1 ≡ j�Re�kBmR� − Re�kImR��−1j, (3)

between the modes with frequencies kBmR and kImR. The
latter of these is defined to be the frequency of the internal
mode whose real part is the nearest to the real part of the
Brewster mode’s frequency for a fixed m. The degenerate points
appear as peaks in Fig. 2 that display the degree of degeneracy as
a function of refractive index n and m for several values of radial
mode number l.

It is an interesting fact that even in the circular cavity, sig-
natures of an EP can be observed in the parameter space
spanned by the real-valued refractive index and the radial mode
number l. However, it is important to mention that this EP
cannot be reached exactly because l is a discrete variable.
Similar to the studies in Refs. [12,21] on deformed cavities,
the EP rather manifests in a narrow transition region between
the two different coupling regimes: weak and strong coupling.

(a)

(b)

Fig. 1. (a) Real and (b) imaginary part of scaled frequency kR of the
modes in the microdisk obtained by Eq. (1) for TE polarization with
n � 3.14, as a function of azimuthal mode numberm. Dots (·), crosses
(+), and open circles (∘) mark internal modes, external modes, and kBmR
corresponding to the Brewster angle, respectively.
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The weak and strong coupling regimes are readily appreci-
able through a toy model of a non-Hermitian Hamiltonian

H �
�
e1 v
v e2

�
, (4)

where e1, e2 ∈ C. Here, we assume v ∈ R� and Re�e1� �
Re�e2�. The eigenvalues of H are E� � �e1 � e2�∕2�

ffiffiffi
Γ

p
with Γ � ��e1 − e2�∕2�2 � v2. If the coupling is sufficiently
weak, 2v < jIm�e1 − e2�j, the eigenvalues are altered only in
their imaginary components as E� � �e1 � e2�∕2� i

ffiffiffiffiffiffi
jΓj

p
while, if the coupling is sufficiently strong, 2v > jIm�e1 − e2�j,
only the real parts bifurcate as E� � �e1 � e2�∕2�

ffiffiffiffiffiffi
jΓj

p
[34]. The former and latter cases are the weak and strong cou-
pling, respectively. At the border in between these two regimes

2v � jIm�e1 − e2�j, (5)

i.e., Γ � 0, either the two eigenvalues or the two corresponding
eigenvectors become identical [2]. In other words, an EP is
the border between the weak and strong coupling regimes.
Note that when the decay rates of the coupled modes are
similar, i.e., Im�e1� ≈ Im�e2�, a small coupling is enough to
achieve EPs.

In Fig. 2, we can see a changeover from the high to low
values of Eq. (3) roughly around n ∼ 2, which corresponds to
a transition from the weak to the strong coupling regime. This
transition is more clearly seen in Fig. 3, exemplifying the mode
with a fixed azimuthal mode number m � 10, in which the

Fig. 2. Degree of degeneracy of mode pairs Re�kBmR� and Re�kImR�
given by Eq. (3) as a function of azimuthal mode number m and re-
fractive index n in the circular cavity. The arrowed curve separates the
weak and strong coupling regimes. Δ−1 and the color code are in log
scale from (black) min � 10−1 to (white) max � 105. The refractive
index is sampled with 500 points from n � 1.5 to n � 4.

Fig. 3. (a) Real and (b) imaginary part of kR in the circular cavity as a function of refractive index n with a fixed azimuthal mode number m � 10
undergoing strong (i, ii) and weak [(iii, iv) and (v, vi)] coupling between kB10R and kI10R with different radial mode numbers l � 3, 4, and 5. Solid-
black and dashed-orange curves are kB10R and kI10R, respectively. Solid-blue arrows in (a) and (b) guide the trajectory of k

I
mR for increasing n. Dotted-

blue vertical arrows indicate the change of a radial mode number l of kImR (frequency of the nearest internal mode to the Brewster mode) from 3 to 4.
The right panels show intensities jψ�x, y�j2 of the modes marked by the same labels as in (a) and (b). The white-quarter circular and sky-blue
oscillating curves superimposed on the right panels are the cavity boundaries and jψ�x, 0�j2, respectively.

(a)

(b)

Fig. 4. (a) Real and (b) imaginary part of kBmR and kImR as a function
of refractive index n with a fixed azimuthal mode number m � 50. The
short segmented orange curves with a steeper slope in (a) and upper fluc-
tuating orange curves in (b) belong to kI50R with different radial mode
number l. The mode number l increases from left to right. The black
curves with the more gentle slope in (a) and the lower fluctuating black
curves in (b) belong to kB50R. Two examples l � 17 and 18 of the internal
mode with frequency kI50R are indicated in (a). Thin solid-green
and dashed-red curves connect the values of kI50R and kB50R at which
the real or the imaginary part of them crosses. The vertical-blue arrow
separates the regions of strong and weak coupling at n ≈ 2.22.

466 Vol. 7, No. 4 / April 2019 / Photonics Research Research Article



strong coupling pair (i,ii) transits to the weak coupling pair (iii,
iv) when n increases. This transition of coupling regimes is
identified by the radial mode number l ; as depicted by the dot-
ted vertical arrows in Fig. 3, the mode number l of kImR changes
from l � 3 to 4 when n is increased.

Figure 4 shows the overall structure of kBmR and kImR as a
function of refractive index n for a fixed azimuthal mode
number m � 50. As predicted by Eqs. (2a) and (2b),
Re�kI50R� [e.g., curves l � 17, 18 in Fig. 4(a)] decreases more
rapidly than Re�kB50R�, as shown in Fig. 4(a). Because of this
different slope, the radial mode number l of Re�kI50R� increases
in turn when n increases: Re�kI50R� with l � 17 approaches
Re�kB50R� and crosses it as n increases. After the crossing,
Re�kI50R� with l � 17 moves away from Re�kB50R� while the
next Re�k50R� with l � 18 approaches Re�kB50R�, becoming
the new Re�kI50R� as n further increases. This process repeats
successively, resulting in many short segmented diagonal curves

crossing Re�kB50R� in Fig. 4(a). The transition between the
strong and weak coupling becomes more evident when we draw
the curve connecting the crossings of either Re�kR� or Im�kR�,
as shown by the thin-solid-green and thin-dashed-red curves in
Fig. 4. Here, the strong coupling with radial mode number l �
17 transits to the weak coupling with l � 18 at approximately
n � 2.22, which is the inferred EP of the internal–external
mode-coupling pair with azimuthal mode number m � 50 in
the circular cavity.

Up to now, the EPs in the circular cavity, with real-valued
refractive index n and radial mode number l, were given in an
approximate approach since the transition from weak to strong
coupling takes place within the discrete sequences of the local
maxima of the degree of degeneracy (see Fig. 2). In the next
sections, we obtain EPs by introducing two different kinds
of perturbations; boundary deformations and absorption.

4. DEFORMED CAVITY WITH REAL-VALUED
REFRACTIVE INDEX

We consider the microflower cavity [35,36]

ρ�θ� � ρ0�ε��1� ε cos�N θ��, (6)

where ε, N , and ρ0�ε� � R�1� ε2∕2�−1∕2 are the dimension-
less deformation strength, shape factor, and normalization co-
efficient fixing the cavity area to πR2, respectively. For ε � 0,
the cavity is circular with radius R, while for ε ≠ 0, the cavity
boundary has N maxima and N minima along the azimuthal
angle θ ∈ �0, 2π�. Figure 5 shows an example of the cavity with
ε � 0.1 and N � 20. For the numerical computation of the
modes in this deformed cavity, we use the boundary element
method [37].

Since our goal is to efficiently couple the Brewster mode with
frequency kBmR and the internal mode with kImR for the same
azimuthal mode number m, we choose the boundary to have
all its concave parts at the locations where the mode intensities
on the boundary have their maximum values (see, e.g., [35,38]).
This can be done by setting N � 2m. For example, N � 20
corresponds to m � 10 in Fig. 5. Under this deformation, the
even-symmetric mode �ψ�y� � ψ�−y�� for positive deformation

Fig. 5. Illustration of the cavity boundary in Eq. (6) with ε � 0.1
and N � 20. The gray shaded region bounded by the corrugated
black curve depicts the deformed cavity, while the region bounded
by the dashed red curve is the undeformed circle (ε � 0). n1 and
n2 are the refractive indices of the interior and exterior of the cavity,
respectively.

n
n

(a) (b)

Fig. 6. (a) Real and (b) imaginary part of the frequencies kR of the modes in the microflower cavity as a function of deformation parameter ε and
refractive index n with fixed �l ,m� � �4, 10�. Note that ε decreases from left to right. Labels iii and iv are the same as in Fig. 3. Orange curves
connecting the points marked by numbers from 1 to 12 show the Riemann surface topology around the EP. Blue curves are the branch-cut in
Eq. (7).
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parameter (ε > 0) is equivalent to the odd-symmetric mode
�ψ�y� � −ψ�−y�� for negative deformation parameter (ε < 0).
In the present paper, we fix the modes to be even-symmetric
so that when ε < 0, theQ-factor of the internalmodes is spoiled,
leading to large values of the decay rate jIm�kR�j that come close
to the decay rate of the external modes. This indicates that a tiny
couplingmight be enough to couple internal and external modes
as predicted by Eq. (5).

We calculate kBm�n, ε�R and kIm�n, ε�R in the vicinity of the
local maximum values of the degree of degeneracy [Eq. (3)].
Figure 6 shows the resulting topology near the EP correspond-
ing to the square-root Riemann-surface characteristic for a
second-order EP. Note that at the point (iii,iv) (i.e., in the cir-
cular cavity) the modes undergo weak coupling. Figures 7 and 8
show the intensity patterns jψ j2 for the modes marked by the

same labels as in Fig. 6. Following the numbers in the figure
explores the trajectory in the parameter space circulating the
EP. As is well known, the EP has to be encircled four times in
total to recover the original phase of the mode (not shown) [8].

In order to ascertain EPs embedded in the Riemann surface
in Fig. 6, we first identify the branch-cut [39] curve on which
the EP is located. Here, the branch-cut,

Re�kBm�n, ε�R� � Re�kIm�n, ε�R�
Im�kBm�n, ε�R� � Im�kIm�n, ε�R�

for
ε > εEP
ε < εEP

, (7)

is a continuation of the degenerated Re�kR� curves in the
weak-coupling region and the degenerated Im�kR� curves in
the strong-coupling region, which are not a straight line in
parameter space. We found that a quadratic relation n�
α�ε−β�2�γ fits the parameters for the branch-cut curves in

Fig. 7. Intensity mode pattern jψ�x, y�j2 in the microflower cavity corresponding to the marked points in Fig. 6 with the same labels. The white
circular and corrugated curves are the cavity boundaries.

Fig. 8. Intensity mode pattern jψ�x, y�j2 in the microflower cavity corresponding to the marked points in Fig. 6 with the same labels. The white
corrugated circular and sky-blue oscillating curves, superimposed on the figures, are the cavity boundaries and jψ�x, 0�j2, respectively. The red
dashed horizontal line in the middle panel is the x axis.
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our investigations very well. The real-valued constants �α, β, γ�
can be obtained by inserting three sampled parameter values
�n, ε� of the crossing points in the Riemann surface, e.g., in
Fig. 6, (A, B) and (iii, iv) of Re�kR� and (C, D) of Im�kR�,
into this quadratic relation.

The general existence of the EPs of internal and external
modes is exemplified in Fig. 9. The EPs �nEPm,l , εEPm,l � �
�α�εEPm,l − β�2 � γ, εEPm,l � in the figure are obtained by the
constants �α,β,γ���172.35,0.0041,2.078�, (132.25,0.0067,
2.334), and (77.44,0.01,2.42) for the modes �l ,m� � �4, 12�,
(4, 10), and (3, 7), respectively. Note that the EP formed
from an external–internal mode pair can occur for rather
weak boundary deformations, and is accompanied by a large
Q-spoiling of the internal mode. This might be advantageous
for applications where a particular internal mode needs to be
discriminated.

5. CIRCULAR CAVITY WITH COMPLEX-VALUED
REFRACTIVE INDEX

In the previous section, internal and external modes are tuned
to cause an EP using a deformation of the cavity’s boundary. A
crucial effect of such a deformation is the Q-factor spoiling of
the internal mode such that it can couple efficiently to the
external mode. In this section, we propose an alternative way
to couple internal and external modes in a circular cavity:
namely, by introducing an imaginary part of the refractive index
inside the cavity. Outside of the cavity, the refractive index is
still assumed to be 1. Therefore, the imaginary part of n ∈ C
can be regarded here as a uniform absorption in the cavity
contributing to the effective refractive index.

In the following, we explain the scheme to derive an EP
using a complex refractive index in detail. We consider as
an example the internal mode �l ,m� � �4, 12� and an external
mode with the same m deep in the complex kR plane. Based on
this preparation, first, we tune the refractive index along the real

axis to n ≈ 3.116606, where both considered modes have the
same real part of kR as kIR � 8.869893 − 0.003494i (i1, cross
in Fig. 10) and kEXR � 8.869893 − 4.393046i (i2, empty
circle in Fig. 10), respectively. Note that they are still distin-
guished by a large difference in Im�kR�. Starting from this
point, we increase the imaginary part of the refractive index
and follow the curve in the complex n-plane, where both modes
have the same Re�kR� (see orange solid and blue dashed curves
in Fig. 10). At nEP ≈ 2.506950� 1.134904i a point is reached
where also Im�kR� of the modes coalesce. This marks the (black
dot) EP in Fig. 10. Tracing the modes further along a param-
eter curve at which the same Im�kR� is shared, we can observe a
branching behavior of Re�kR� in Fig. 10. In the vicinity of the
EP, the two characteristic Riemann sheets of a complex square
root topology are obtained as shown in Figs. 10(c) and 10(d).

In Fig. 11(a), the difference of kR to the mean kR � �kIR �
kEXR�∕2 is shown along the parameter curve explained previ-
ously, which is parameterized by τ as shown in Fig. 11(b). At
τ � 0 (i.e., real n), the intensity patterns of the internal and
external modes (i1 and i2) are clearly distinguishable whereas
on the EP, at τ ≈ 1.411, a single hybrid mode is formed with
significant contributions inside as well as outside of the cavity.
Further away from the EP, at τ � 3, the modes are again clearly
distinguishable by their mode patterns (f 1 and f 2). While one
mode (f 2 in Fig. 11) is clearly an externalmode, the other one (f 1
in Fig. 11), at first glance, seems to be a hybrid mode whose
pattern is similar to the one at the EP. However, this similarity
simply comes from the fact that the mode f 1 is inside a cavity

(a)

(b)

Fig. 9. (a) Real and (b) imaginary part of the frequency relative
to kR � �kBmR � kImR�∕2 of the selected internal and external modes’
frequencies kR as a function of deformation parameter ε. The
EPs marked by vertical arrows are at εEPl ,m � −0.00127, −0.00582,
and −0.0136 for the modes �l ,m� � �4, 12�, (4,10), and (3,7),
respectively.

(a) (b)

(c) (d)

Fig. 10. (a),(c) and (b),(d) show the real and the imaginary parts of
kR in the complex n plane, respectively. The (blue and gray) dashed
curves belong to kR of the external mode and the (orange and gray)
solid curves correspond to the internal mode. In (a) and (b), the cross
(empty circle) marks the initial frequency of the internal (external)
mode. The EP is marked by a black dot. In (c) and (d), the vicinity
of the EP is shown via Δn � n − nEP. The outer thick red curve cor-
responds to a two-fold encircling of the EP. Thin gray dots represent
the Riemann sheets of kR.
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with a refractive index close to 1.More precisely, if themode f 1 is
traced to a cavity with a real refractive index, it is related to the
previous internal mode; see gray curves in Figs. 10(a) and 10(b).

The general existence of such EPs for internal–external
mode pairs, through the complex refractive index, is confirmed
by exemplifying several mode pairs with m � 12 in Fig. 12.
Interestingly, the EPs and the corresponding parameter curves
are quite regular in the complex n plane, and the morphology of
the parameter curves is dictated by the external mode; see
Figs. 12(b)–12(e). If the corresponding external mode is deeper
in the complex kR plane, in general, a longer parameter path in
the complex n plane is taken to reach the EP [note the different
vertical scales in Figs. 12(b)–12(e)]. Hence, EPs associated with
the first external modes [Fig. 12(e)] should be very close to the
real n axis, which explains why they are accessible via weak or
moderate boundary deformations as in Section 4.

In obtaining EPs through the complex-valued refractive in-
dex, some remarks are in order. First, the tracing procedure
starting from the crossings in the imaginary part of kR to
get the EPs is possible only for particular internal–external
mode pairs. This is because such intersections in principle
occur only for TE polarization (more specifically, only between
kBmR and kImR). Rather, the crossings in the real part of kR
between external and internal modes are more likely; see
Fig. 12(a). Second, the exact definition of internal and external
modes becomes more subtle in the complex refractive index n

plane. In the previous studies [28,29], they are often charac-
terized via their behavior for Re �n� → ∞. However, for com-
plex n, one needs to specify more precisely the path along which
this limit is taken.

At first glance, the experimental feasibility to adjust both the
real and imaginary parts of the effective refractive index over
wide ranges as, e.g., in Figs. 12(b)–12(e), seems to be problem-
atic. However, realistic physical cavity systems already suffer
unavoidable non-Hermitian processes such as pumping or
absorption. As a matter of fact, besides changing the intrinsic
material, e.g., nPolymer ∼ 1.5 or nInGaAsP ∼ 3.3, large-scale con-
trol of the refractive index is available as well as fine-tuning of
them statically, e.g., via material compositions [40,41] and ad-
justed cavity heights [42,43], or dynamically, e.g., via temper-
ature control [44], changes of the environmental gas [45], or
pump power control [46]. Moreover, the wavelength depend-
ency of the complex refractive index might be exploited to
setup experiments. For example, GaAs has complex refractive
index n � 3.8300� 0.18145i for wavelength λ � 0.65 μm
and n � 2.2730� 4.0840i for λ � 0.248 μm [40].

6. SUMMARY

We revealed numerically the existence of exceptional points
resulting from the coupling of two different kinds of modes,
i.e., an internal (Feshbach resonance) and external mode (shape

(a)

(b)

Fig. 11. (a) Real (left/red axis/dashed curves) and imaginary (right/
blue axis/solid curves) parts of the wave number kR relative to kR �
�kIR � kEXR�∕2 along the parameter curve in the complex n plane.
The parameter curve is shown in (b), where the EP is marked as a thick
black dot. τ parameterizes this curve starting at τ � 0 for real n. τ � 3
is marked as a black cross. The corresponding mode patterns at τ � 0
(i), τ � τEP ≈ 1.411 (EP), and τ � 3 (f ) are shown. The color map of
the intensities ranging from black to red is truncated outside the cavity
at twice the maximum value inside the cavity.

(a)

(b) (c)

(d) (e)

Fig. 12. In (a), Re�kR� is shown for varying real refractive index n
for internal (black thick curves) and external (magenta thin curves)
modes with m � 12 in a circular cavity. In (b)–(e), the paths in
the complex n plane are shown for which two modes (one internal
and one external) with m � 12 have the same Re�kR�. The end point
of each curve marks an EP. Colored dots in (a) mark the intersections
as starting points for the parameter curves in (b)–(e).
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resonance), in an optical microdisk cavity. The external modes
have exponentially small contributions inside the cavity and a
low Q-factor, whereas the internal modes usually have a high
Q-factor representing the trapping of light inside the cavity. In
this regard, an exceptional point between such different types of
modes is novel and fundamentally different from previous stud-
ies on exceptional points in microdisk cavities where pairs of
internal modes are considered solely. Signatures of an excep-
tional point formed by a particular class of external modes re-
lated to Brewster’s angle can be seen even in a circular cavity
with a real-valued refractive index. However, this exceptional
point can be obtained only in an approximate manner by im-
plementing a discrete parameter (the mode number l ) and a
continuous parameter (the refractive index n). In order to
merge an internal and external mode exactly, a second continu-
ous parameter needs to be considered. In the case of external
modes related to Brewster’s angle, such a suitable parameter is
given by a boundary deformation parameter ε. The exact coa-
lescence of arbitrary internal and external modes has been ob-
tained by introducing absorption inside the circular cavity via a
complex refractive index. Thus a two-dimensional parameter
space is spanned by �Re�n�, Im�n��, which allows us to achieve
exceptional points between modes that are positioned at distant
points in the complex frequency plane.
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