• Photonics Research
  • Vol. 5, Issue 6, 640 (2017)
Xu-Zhen Gao1, Yue Pan1, Guan-Lin Zhang1, Meng-Dan Zhao1, Zhi-Cheng Ren1, Chen-Ghou Tu1, Yong-Nan Li1、2, and Hui-Tian Wang1、3、*
Author Affiliations
  • 1School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
  • 2e-mail: liyongnan@nankai.edu.cn
  • 3National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1364/PRJ.5.000640 Cite this Article Set citation alerts
    Xu-Zhen Gao, Yue Pan, Guan-Lin Zhang, Meng-Dan Zhao, Zhi-Cheng Ren, Chen-Ghou Tu, Yong-Nan Li, Hui-Tian Wang. Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields[J]. Photonics Research, 2017, 5(6): 640 Copy Citation Text show less
    References

    [1] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [2] X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, H. T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [3] A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett., 90, 013903(2003).

    [4] S. Sato, Y. Kozawa. Radially polarized annular beam generated through a second-harmonic-generation process. Opt. Lett., 34, 3166-3168(2009).

    [5] S. M. Li, Y. Li, X. L. Wang, L. J. Kong, K. Lou, C. Tu, Y. Tian, H. T. Wang. Taming the collapse of optical fields. Sci. Rep., 2, 1007(2012).

    [6] J. T. Barreiro, T. C. Wei, P. G. Kwiat. Remote preparation of single-photon ‘hybrid’ entangled and vector-polarization states. Phys. Rev. Lett., 105, 030407(2010).

    [7] C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, G. Leuchs. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. Phys. Rev. Lett., 106, 060502(2011).

    [8] F. Lu, W. Zheng, Z. Huang. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light. Opt. Lett., 34, 1870-1872(2009).

    [9] A. Ciattoni, B. Crosignani, P. Di Porto, A. Yariv. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell’s equations in a Kerr medium. Phys. Rev. Lett., 94, 073902(2005).

    [10] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [11] X. L. Wang, J. Chen, Y. N. Li, J. P. Ding, C. S. Guo, H. T. Wang. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 105, 253602(2010).

    [12] O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Y. Zenkova. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt. Express, 20, 3563-3571(2012).

    [13] O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, C. Y. Zenkova, N. V. Gorodynska. Circular motion of particles by the help of the spin part of the internal energy flow. Proc. SPIE, 8882, 88820A(2013).

    [14] X. Jiao, S. Liu, Q. Wang, X. Gan, P. Li, J. Zhao. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Opt. Lett., 37, 1041-1043(2012).

    [15] Y. Zhang, B. Ding. Magnetic field distribution of a highly focused radially-polarized light beam. Opt. Express, 17, 22235-22239(2009).

    [16] G. Wu, F. Wang, Y. Cai. Generation and self-healing of a radially polarized Bessel–Gauss beam. Phys. Rev. A, 89, 043807(2014).

    [17] G. H. Yuan, S. B. Wei, X. C. Yuan. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A, 28, 1716-1720(2011).

    [18] S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating radially polarized beams interferometrically. Appl. Opt., 29, 2234-2239(1990).

    [19] A. M. Beckley, T. G. Brown, M. A. Alonso. Full Poincaré beams. Opt. Express, 18, 10777-10785(2010).

    [20] W. Han, W. Cheng, Q. Zhan. Flattop focusing with full Poincaré beams under low numerical aperture illumination. Opt. Lett., 36, 1605-1607(2011).

    [21] G. M. Lerman, U. Levy. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization. Opt. Lett., 32, 2194-2196(2007).

    [22] M. Born, E. Wolf. Principles of Optics(1999).

    [23] X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, H. T. Wang. A new type of vector fields with hybrid states of polarization. Opt. Express, 18, 10786-10795(2010).

    [24] Y. Pan, Y. N. Li, S. M. Li, Z. C. Ren, Y. Si, C. Tu, H. T. Wang. Vector optical fields with bipolar symmetry of linear polarization. Opt. Lett., 38, 3700-3703(2013).

    [25] A. Bekshaev, M. Soskin, M. Vasnetsov. Paraxial Light Beams with Angular Momentum(2008).

    [26] O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express, 19, 660-672(2011).

    [27] M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 54, 1593-1596(1996).

    [28] A. Bekshaev, K. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [29] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. London A, 253, 358-379(1959).

    [30] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [31] M. V. Berry. Optical currents. J. Opt., 11, 094001(2009).

    [32] J. W. M. Chon, X. Gan, M. Gu. Splitting of the focal spot of a high numerical-aperture objective in free space. Appl. Phys. Lett., 81, 1576-1578(2002).

    [33] R. Dorn, S. Quabis, G. Leuchs. The focus of light—linear polarization breaks the rotational symmetry of the focal spot. J. Mod. Opt., 50, 1917-1926(2003).

    [34] P. Li, S. Liu, G. Xie, T. Peng, J. Zhao. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams. Opt. Express, 23, 7131-7139(2015).

    [35] X. Hao, C. F. Kuang, T. T. Wang, X. Liu. Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett., 35, 3928-3930(2010).

    [36] D. Zhang, X. Feng, K. Cui, F. Liu, Y. Huang. Identifying orbital angular momentum of vectorial vortices with Pancharatnam phase and Stokes parameters. Sci. Rep., 5, 11982(2015).

    [37] H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, H. T. Wang. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett., 36, 3179-3181(2011).

    [38] Z. Chen, T. Zeng, B. Qian, J. Ding. Complete shaping of optical vector beams. Opt. Express, 23, 17701-17710(2015).

    CLP Journals

    [1] Jinwen Wang, Xin Yang, Yunke Li, Yun Chen, Mingtao Cao, Dong Wei, Hong Gao, Fuli Li. Optically spatial information selection with hybridly polarized beam in atomic vapor[J]. Photonics Research, 2018, 6(5): 451

    Xu-Zhen Gao, Yue Pan, Guan-Lin Zhang, Meng-Dan Zhao, Zhi-Cheng Ren, Chen-Ghou Tu, Yong-Nan Li, Hui-Tian Wang. Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields[J]. Photonics Research, 2017, 5(6): 640
    Download Citation