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The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.
We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field, and
further explore the redistribution of the energy flow in the focal plane by designing different phase masks
including fanlike phase masks and vortex phase masks on them. The flexibly controlled transverse energy flow
rings of the tightly focused ellipticity-variant vector optical fields with and without phase masks can be used to
transport multiple absorptive particles along certain paths, which may be widely applied in optical trapping and
manipulation. © 2017 Chinese Laser Press
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1. INTRODUCTION

During the past few years, manipulation of polarization has be-
come a rather appealing and promising topic of physical optics.
The polarization as an additional degree of freedom can be used
to control light, leading to the creation of vector optical fields
(VOFs) with spatially inhomogeneous states of polarization
(SoPs) [1,2]. Due to the unique polarization distribution, the
VOFs have exhibited great potential in a variety of scientific
and engineering applications, such as nonlinear optics [3–5],
quantum optics and information [6,7], optical imaging [8],
near-field optics [9], and optical trapping and manipulation of
particles [10,11]. The energy flow in the focal plane of the
optical field is always interesting and useful, as it can be
widely used in optical trapping and manipulation [12,13]. One
interesting idea is to study the energy flow of tightly focused
VOFs [14–17], taking full advantage of the flexibly controlled
space-variant distribution of polarization. As is known, the
transversal Poynting vector of the frequently used focused
cylindrical vector field is always zero, and there are only a
few reports about redistributing the transverse energy flow
of the cylindrical vector fields with amplitude and phase modu-
lation [14,17]. To our knowledge, there is no work related to
the energy flow of tightly focused vector fields without cylin-
drical symmetry. Hence, it is necessary to discover the trans-
verse energy flow of new kinds of VOFs, and the impact of

modulation masks on the designing of energy flow is also worth
investigating.

In this paper, we study the redistribution of the energy flow
in the focal plane of one specific kind of VOF called the
ellipticity-variant VOF (EV-VOF). We theoretically design and
experimentally generate EV-VOFs, and the polarization of the
EV-VOF has the space-invariant orientation of the long axis
and space-variant ellipticity, which is very different from the
previously existing VOFs [1,2,18–21]. The expression for the
electromagnetic fields and Poynting vector in the focal plane
based on the vectorial Richards–Wolf diffraction integration
is presented, and the transverse energy flow of the tightly
focused EV-VOFs can transport multiple absorptive particles
to fixed locations. We also add two kinds of phase masks to
the EV-VOFs in order to gain various energy flow rings in
the focal plane. As a result, the absorptive particles can be
transported along flexibly controlled paths at uniform and
nonuniform speeds.

2. EV-VOF

We utilize the Poincaré sphere (PS) to deduce the SoPs of the
EV-VOF. The PS representation of polarization states of light is
shown in Fig. 1(a), and the coordinates 2α and 2ϕ on the PS
stand for the latitude and longitude angles, respectively, of a
point in a spherical coordinate system. The SoP at a given point
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(2ϕ, 2α) on the PS can be described by the unit vector
Ŝ�2ϕ; 2α� as follows [22]:

Ŝ�2ϕ; 2α� �
�
sin�α� π∕4� exp�−jϕ�êr
cos�α� π∕4� exp�jϕ�êl

�

�
�
cosα�cos ϕêx � sin ϕêy�
jsinα�− sin ϕêx � cos ϕêy�

�
; (1)

where fêr ; êl g are right-handed (RH) and left-handed (LH)
unit circular vectors, respectively, while fêx ; êyg are orthogonal
base vectors in the Cartesian coordinate system. The orienta-
tion of polarization controlled by ϕ changes along the latitude
of the PS, while the ellipticity of polarization controlled by α
changes along the longitude. To guarantee an EV-VOF with
only one orientation of polarization, we should design and con-
struct this new kind of VOF along one single longitude of the
PS. From the north pole to the south pole of the PS in Fig. 1(a),
the polarization changes through this progress, from right
circular polarization (north pole A) to right elliptical polariza-
tion to linear polarization (the equator) to left elliptical polari-
zation to left circular polarization (south pole B). All the
polarizations occurring in the EV-VOF we designed are along
this single longitude, including linear, elliptical, and circular
polarizations.

Here we define the ellipticity of polarization as

ε � sin�2α�; (2)

where 2α is the latitude of the PS, with α ∈ �−π∕4; π∕4�. The
definition of ellipticity specifies not only the magnitude of
ellipticity, jεj, but also the sense of the elliptical polarization.
The positive and negative ε correspond to the RH and LH
polarizations, respectively. Particularly, jεj � 1 and jεj � 0
stand for the circular and linear polarizations, respectively.

In theory, the ellipticity can take any value or function in the
range of �−1; 1� for the EV-VOFs, as the range of α is
�−π∕4; π∕4�. In this paper, we explore two basic kinds of
EV-VOFs with the sine form varying ellipticity over a range of
�−1; 1� and [0, 1] as

εA � sin�δ�ϕ; r� − π∕2�; (3)

εB � j sin�δ�ϕ; r�∕2�j; (4)

where δ�ϕ; r� is allowed to have an arbitrary spatial distribu-
tion. We can see from Eqs. (3) and (4) that εA and εB are both
represented by the sine function and constructed along one
longitude of the PS, but the range of the ellipticity is different.
The range of εA is �−1; 1� and that of εB is [0, 1] when δ�ϕ; r�
changes from 0 to 2π, as shown in Figs. 1(b) and 1(c). For one
period of εA, the polarization changes from the south pole
(point B) to the north pole (point A), and then from the north
pole (point A) to the south pole (point B). However, the polari-
zation changes from the equator (point C) to the north pole
(point A), and then from the north pole (point A) to the equa-
tor (point C) for one period of εB. If we add a minus sign before
the expression of εB, the polarization of the EV-VOF changes
along the longitude below the equator, which is contrary to
Fig. 1(c).

The experimental setup for generating the EV-VOFs is
shown in Fig. 2, which is a common-path interferometric con-
figuration with the aid of a 4f system, based on the wavefront
reconstruction and the PS [2,23]. This scheme is a universal
method for generating various vector fields. An input linearly
polarized light delivered from a laser (Verdi V5, Coherent Inc.)
is split into two parts, which are achieved by the first orders
diffracted from the sine/cosine grating displayed on a phase-
only spatial light modulator (SLM) placed in the input plane
of the 4f system. The two orders are allowed to pass through a
spatial filter (with two separate open apertures) placed at the
Fourier plane of the first 4f system, and then are converted
into two orthogonally polarized beams by a pair of half-wave
plates behind the spatial filter. The two orthogonally polarized
parts are recombined by the Ronchi phase grating placed in the
output plane of the 4f system. For the EV-VOFs with the
x-oriented polarization (ϕ � 0), which we concentrate on,
the phase function of the holographic grating displayed on
the SLM is t�x; y� � 0.5� 0.5 cosf2πf 0x � arcsin�ε�x; y��g,
and the SoP of the generated EV-VOF can be represented as

E � cos αêx � j sin αêy

� cos

�
sin−1ε�x; y�

2

�
êx � j sin

�
sin−1 ε�x; y�

2

�
êy : (5)

When the space-variant ellipticity in Eqs. (3) and (4) is
applied, the EV-VOFs with the sine-form varying ellipticity
can be presented. We will now demonstrate experimentally
the generation of EV-VOFs using the method mentioned
above. If we set δ�ϕ; r� in Eqs. (3) and (4) as δ�ϕ; r� � mφ�
2nπr in the polar coordinate system, the ellipticity changes

(a)

(b)

(c)

Fig. 1. (a) Schematic of the PS in the spherical coordinate system
represented by the traditional latitude and longitude circles and (b) the
sine-form varying ellipticity εA in a range of �−1; 1� along δ, (c) the
sine-form varying ellipticity εB in a range of [0, 1] along δ.

G 

CCD 

Polarizer 

PC 
SF+λ/2 L1 SLM 

Input 
laser 

L2

Fig. 2. Schematic of the experimental setup for generating the de-
sired EV-VOFs. L1 and L2, a pair of lenses; λ∕2, half-wave plates; SF,
spatial filter; G, Ronchi phase grating; PC, computer.
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along the radial and azimuthal directions with cylindrical sym-
metry. Actually, we can also represent the ellipticity in other
coordinates or expressions [21,24], indicating the flexibility
of this new kind of EV-VOF.

Figures 3 and 4 show the generated EV-VOFs with the sine-
form varying ellipticity in a range of �−1; 1� and [0, 1], respec-
tively, corresponding to Figs. 1(b) and 1(c). The total intensity
patterns in the first row exhibit a uniform distribution and have
no clear polarization singularity for both cases, which is
very different from traditional cylindrical VOFs [1,2,6,7,23].
It is obvious that there is no complete extinction (with zero
minimum intensity) in the x-component intensity patterns,
which is also different from the traditional cylindrical VOFs.

The simulated x-component intensity patterns in the second
row are in good agreement with the measured ones in the third
row. First, we discuss the case of EV-VOFs with the sine-form
varying ellipticity in a range of �−1; 1�, as shown in Fig. 3. When
n � 0, the ellipticity of the EV-VOF changes along the azimu-
thal direction; that is to say, the SoP changes along the azimu-
thal direction. The x-component intensity patterns exhibit
fanlike half-extinctions whose maximum intensity is the same
as the total intensity, while the minimum intensity is half of
the maximum intensity, which means the visibility of the
x-component intensity pattern is 1/3. The positions of the
half-extinctions correspond to the positions of the circular
polarization, which are also the positions of jεAj � 1 in
Fig. 1(b), so the number of half-extinctions is 2 times of
the value of m. When m � 0, the ellipticity of the EV-VOF
changes along the radial direction, as shown in the third
column in Fig. 3. When n � 1, the x-component intensity
pattern exhibits a ring (corresponding to right circular
polarization) and a singularity in the center (corresponding
to left circular polarization). When n increases, there is always
one singularity in the center, and the number of the half-
extinction rings is 2n − 1. When �m; n� � �1; 1�, the ellipticity
changes along both azimuthal and radial directions, and the
x-component intensity pattern exhibits a spiral shape. In the
case of EV-VOFs with the sine-form varying ellipticity in range
of [0, 1] in Fig. 4, corresponding to Fig. 1(c), the length of the
path that εB passes on the PS is half of εA, so the number of
fanlike half-extinctions when n � 0 is m. When m � 0, the
x-component intensity pattern exhibits a ring without a singu-
larity in the center, because the polarization in the center is
x polarization. We can see that the number of ring-shaped
half-extinctions when m � 0 is n. When m ≠ 0 and n ≠ 0,
the x-component intensity pattern exhibits a pair of twisted
spirals. As for the y-component intensity patterns of the
EV-VOFs whose maximum intensity is half of the total
intensity, the intensity patterns exhibit complete extinctions,
which are complementary to those of the x component shown
in Figs. 3 and 4.

It is worth mentioning that the polarization of the EV-VOFs
we design and generate is x-oriented polarization with space-
variant ellipticity, but the orientation can actually be arbitrarily
designed in the same way we introduced above. We should also
state that though the mathematical representation and exper-
imental realization of the EV-VOFs are similar to the previous
vector fields with hybrid SOPs [23], the EV-VOF is still a new
kind of vector field constructed along only one longitude of
the PS, which is very different from all the previously existing
kinds of VOFs. Specifically, no matter what the topological
charge �m; n� is, there is never complete extinction for the
x-component intensity pattern of the EV-VOF, while com-
plete extinction appears for the y-component intensity pattern.
Moreover, the proportion of the x component of the EV-VOF
is much larger than the y component. Although the EV-VOF is
(to our knowledge) a new kind of VOF with some unique prop-
erties, it is obvious that the presentation of a new vector field is
not enough, as novel properties and useful applications are al-
ways expected. Indeed, we design and construct this new kind
of EV-VOF during the study of the energy flow of tightly
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Fig. 3. Generated EV-VOFs when �m; n� � �1; 0�, (2, 0), (0, 1),
and (1, 1). The first row gives the total intensity patterns and corre-
sponding schematics of the SoPs, and the second and third rows show
the simulated and measured x-component intensity patterns, respec-
tively, for the EV-VOFs with the sine-form varying ellipticity in a
range of �−1; 1�.
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Fig. 4. Generated EV-VOFs when �m; n� � �1; 0�, (2, 0), (0, 1),
and (1, 1). The first row gives the total intensity patterns and corre-
sponding schematics of the SoPs, and the second and third rows show
the simulated and measured x-component intensity patterns, respec-
tively, for the EV-VOFs with the sine-form varying ellipticity in a
range of [0, 1].
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focused vector fields, so redistributing the energy flow of the
EV-VOF will be investigated next.

3. CALCULATION OF ENERGY FLOW IN THE
FOCAL PLANE

The study of energy flow in the focal plane of VOFs has always
attracted research interest, especially for the local linearly po-
larized VOFs [14–17]. The most representative application
of the energy flow is manipulating and transporting absorptive
particles [25–27]. Absorptive particles suspended in water are
optically trapped within a laser beam strongly focused by the
microscope objective. In absorbing a certain portion of the
beam energy, the particles simultaneously obtain the associated
portion of its energy flow. This causes the motion of the par-
ticles that can be seen by the microscope. For absorbing
particles, the trajectory of the particle motion coincides in
direction with the Poynting vector, and the velocities of the
particle motion along the lines of the Poynting vector are pro-
portional to its modulus. As a result, the energy flow can be
seen via the particle trajectory within the beam “body” [28].
We now investigate the distribution of the energy flow,

especially the transverse energy flow, which is useful in manipu-
lating absorptive particles, for a tightly focused EV-VOF.

According to the vectorial Richards–Wolf diffraction inte-
gration [29,30], we first derive the electric field expression
of a tightly focused EV-VOF as follows:

E �
Z

θm

0

Z
2π

0

P�θ�MeK �ϕ; θ� sinθdϕdθ; (6)

Me �

2
64
�Eρcosθcosϕ − Eϕ sinϕ�êx
�Eρcosθsinϕ� Eϕcosϕ�êy

Eρ sinθêz

3
75; (7)

K �ϕ; θ� � ejk�zcosθ�rsinθcos�φ−ϕ��; (8)

where ρ and ϕ are the radial and azimuthal coordinates, respec-
tively, and Eρ and Eϕ are the radial and azimuthal components,
respectively, of the incident vector fields in the polar coordinate
system �ρ;ϕ� on the input plane. r, φ, and z are the radial,
azimuthal, and longitudinal coordinates, respectively, in the
cylindrical coordinate system �r;φ; z� on the focal plane.
k � 2π∕λ is the wavenumber, and λ is the wavelength in free
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Fig. 5. Intensity distributions and the Poynting vectors in the focal plane of the tightly focused EV-VOFs with the sine-form varying ellipticity in
a range of �−1; 1� when �m; n� � �2; 0�, (4, 0), and (6, 0) (left, middle, and right columns, respectively). The intensity patterns of the tightly focused
fields are shown in the first row, and the transverse and longitudinal components of the normalized Poynting vectors in the focal plane are shown in
the second and third rows, respectively. The direction of the transverse energy flow is shown by the black arrows. All images have dimensions of
4λ × 4λ.
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space. P�θ� is the pupil plane apodization function, and Me is
the electric polarization vector in the tightly focused field.

As is well known, the electric and magnetic vectors are
orthogonal in an isotropic dielectric [15,29], and they satisfy
the relations Mm � k ×Me, where k � �− sinθcosϕ;
− sinθsinϕ; cosϕ� is the unit vector of the wave vector. The
magnetic field of a highly focused EV-VOF can be
described by

H �
Z

θm

0

Z
2π

0

P�θ�MmK �ϕ; θ� sinθdϕdθ; (9)

Mm �

2
64
�−Eρ sinϕ − Eϕcosθ cosϕ�êx
�Eρcosϕ − Eϕcosθsinϕ�êy
−Eϕ sinθêz

3
75: (10)

We can see that the distribution of the magnetic polarization
vector in Eq. (10) is different from that of the electric polari-
zation vector in Eq. (7). In terms of the full time-dependent
three-dimensional electric and magnetic field vectors, the
energy current can be defined by the time-averaged
Poynting vector [12–15,17,31]:

P∝Re�E� ×H�∝ Im��E� ·∇�E��1

2
∇× Im�E� ×E�; (11)

where E and H are the electric and magnetic fields in the focal
plane, respectively, the scalar product (·) links the vectors E�

and E, and ∇ represents the well-known gradient operator.
We can calculate the energy flow of tightly focused EV-VOFs
with Eqs. (6)–(11), and the numerical aperture is NA � 0.95
in the following calculations.

Now we discuss the energy flow of the EV-VOFs with the
sine-form varying ellipticity in a range of �−1; 1�—in particular,
the transverse energy flow for manipulating the absorptive par-
ticles. By calculation, we find that the transverse energy flow
is zero in the case of an odd topological charge m, while the
transverse energy flow exists in the case of an even topological
charge m. The intensity and the Poynting vectors of the tightly
focused fields in the focal plane when m � 2, 4, and 6 are
shown in Fig. 5, and the intensity pattern of the tightly focused
field always exhibits an ellipse shape. This elliptical focal spot
is similar to the tightly focused field of the linearly polarized
field [32,33], because the proportion of the x component of
the EV-VOF we study is always large. We can see in Fig. 5(a2)
that when m � 2, there are four transverse energy flow
rings, and two of them are clockwise while the other two

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Fig. 6. Schematic structures of the phase masks and the Poynting vectors of the tightly focused EV-VOFs with the sine-form varying ellipticity in
a range of [0, 1] when �m; n� � �1; 0�. The cases of twofold, fourfold, and sixfold fanlike phase masks are shown in the first, second, and third
columns, respectively. The schematics of fanlike phase masks are shown in the first row, and the transverse and longitudinal components of the
normalized Poynting vectors in the focal plane are shown in the second and third rows, respectively. The direction of the transverse energy flow is
shown by the black arrows. All images in the second and third rows have dimensions of 4λ × 4λ.
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are counterclockwise. The energy finally flows to two fixed lo-
cations marked by two white points, which means the absorp-
tive particles can be transported to the fixed locations along
different routes. As the topological charge m increases, the
number of energy flow rings increases correspondingly. The
number of energy flow rings is 2m, and the number of fixed
manipulating locations (white points) is m, as shown in
Figs. 5(b2) and 5(c2), respectively. However, the magnitude of
the transverse component of the Poynting vector, compared
with the z component, will gradually decrease as m increases,
and thus it becomes more difficult to manipulate particles in
the transverse plane.

4. PHASE MASKS AND REDISTRIBUTION OF
THE ENERGY FLOW

Recently, due to the increasing interest in the study of VOFs
modulated by phase masks [14,17,34], two types of phase
modulation, fanlike phase masks and vortex phase masks,
are applied to EV-VOFs to investigate the energy flow in
the focal plane. Figure 6 shows the energy flow in the focal
plane of the EV-VOFs modulated by fanlike phase masks with
different phase retardation in different regions. The three rows
in Fig. 6 display the phase masks and the transverse and longi-
tudinal components of the Poynting vectors in the focal plane
of the tightly focused EV-VOFs with the sine-form varying
ellipticity in a range of [0, 1] when m � 1. The first column

in Fig. 6 depicts the energy flow for the phase mask shown in
Fig. 6(a1), which is composed of an upper half with 0 phase
retardation and a bottom half with π phase retardation. It can
be seen from the corresponding transverse energy flow that
two counterclockwise transverse energy flow rings play the
dominant role, which can be used to trap and transport two
absorptive particles in different circles. The second and third
columns show the energy flow in the focal plane for fourfold
and sixfold phase masks, and the transverse energy flows exhibit
four and six counterclockwise energy flow rings, respectively,
as shown in Figs. 6(b2) and 6(c2). The number of transverse
energy flow rings is equal to the number of regions of the phase
mask, and the number of symmetric axes of the Poynting
vectors is also equal to the number of regions of the phase
mask. We can also see in Fig. 6 that the transverse energy
flow rings exhibit approximately fanlike shapes, similar to
the phase masks.

As we have shown in Fig. 6, a different number of transverse
energy flow rings can be gained by changing to different fanlike
phase masks. In addition, Fig. 7 shows how to change the lo-
cations of the transverse energy flow rings by rotating the phase
mask by an angle of 0, π∕4, π∕2, and 3π∕4, respectively. We
can see in Fig. 7 that the transverse energy flow rotates by the
same angle as the corresponding phase mask. As a result, we can
control the location of each transverse energy flow ring by
simply rotating the fanlike phase mask, which provides more
degrees of freedom to transport multiple particles.

Fig. 7. Transverse components of the Poynting vectors of the tightly focused EV-VOFs with the sine-form varying ellipticity in a range of
[0, 1] when �m; n� � �1; 0�. The cases of twofold, fourfold, and sixfold fanlike phase masks are shown in the first, second, and third rows, re-
spectively. The rotation angles of the phase masks in columns 1–4 are 0, π∕4, π∕2, and 3π∕4, respectively. The insets show the corresponding fanlike
phase masks used. The direction of the transverse energy flow is shown by the black arrows. All images have dimensions of 4λ × 4λ.
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Fig. 9. Transverse components of the normalized Poynting vectors of the tightly focused vortex EV-VOFs with the sine-form varying ellipticity in
a range of �−1; 1� when �m; l� � �1; 5�; �2; 5�; �3; 5�; �4; 5�; �5; 5�, and (6, 5). The direction of the transverse energy flow is shown by the black
arrows. All images have dimensions of 4λ × 4λ.
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VOFs with a vortex phase are called vortex VOFs, and they
have attracted much attention [35,36]. We simulate the energy
flow of tightly focused vortex EV-VOFswith the sine-form vary-
ing ellipticity in a range of [0, 1], as shown in Fig. 8. The first row
in Fig. 8 displays the intensity of the tightly focused fields when
�m; l� � �3; 1�, (4, 2), (5, 2), and (6, 3), where l is the topologi-
cal charge of the vortex phase. The second and third rows show
the transverse and longitudinal components, respectively, of the
Poynting vectors of the tightly focused vortex EV-VOFs. It can
be seen that the profiles of the transverse components of the
Poynting vectors are polygons: a triangle, quadrangle, pentagon,
and hexagon, respectively. The number of the sides of the poly-
gon is equal to the polarization topological charge m, and the
absorptive particles can be transported along the polygon in
the transverse plane. To get a more standard and uniform poly-
gon of the transverse energy flow, the proper topological charge l
is chosen to match the value ofm in Fig. 8.We should also point
out that when l increases, the proportion of the transverse energy
flow will gradually increase, and the size of the polygon of the
transverse energy flow will also increase. The longitudinal com-
ponents of the Poynting vectors in Fig. 8 are always circles, with
the radius dependent on l instead ofm. Although the absorptive
particles cannot move exactly along the path of the polygon, we
are still interested in designing the uniform transverse energy
flow to transport the absorptive particles along a certain path
at an approximate uniform speed.

Figure 9 shows another case of the transverse energy flows of
tightly focused vortex EV-VOFs with the sine-form varying
ellipticity in a range of �−1; 1�. In this case, the polygon-shaped
transverse energy flows are not uniform anymore. When
m � 1, the energy converges on the upper and lower sides
of the approximately circular transverse energy flow ring.
The energy flow ring becomes elliptical when m � 2, and
the energy converges on the left and right sides. As m increases
from 3 to 6, the energy converges on 3 to 6 points on the trans-
verse energy flow, which creates a polygon shape with 3 to 6
sides. Obviously, the absorptive particles can be transported at a
nonuniform speed by the transverse flows, as shown in Fig. 9,
which also demonstrates the flexibility in controlling the trans-
verse energy flows of tightly focused EV-VOFs.

Based on the variety of energy flow patterns presented, we
further summarize a detailed procedure for controlling energy
flow. By adjusting the distribution of the phase and polariza-
tion, the distribution of the energy flow can be controlled
conveniently and flexibly. In theory, we should calculate the
energy flow using Eqs. (6)–(11), and it is essential to consider
the symmetry of the SoPs of the EV-VOFs, the value of the
topological charge of the EV-VOFs, the different choices of
phase masks, and so on. For experimental generation, the setup
shown in Fig. 2 can be applied to generate arbitrary EV-VOFs,
and various kinds of phase masks can be added to modulate the
phase distribution. As a matter of fact, there have been mature
techniques similar to the method shown in Fig. 2 for generating
optical fields with arbitrary polarization and phase distributions
[37,38], which can be applied to directly generate EV-VOFs
with an arbitrary phase distribution. With these theories and
experimental methods, we believe various kinds of energy flows
can be designed and generated.

5. CONCLUSIONS

In summary, we have proposed theoretically and generated
experimentally a new (to our knowledge) kind of EV-VOF,
which is constructed on one longitude of the PS, so the orien-
tation of polarization is space invariant and the ellipticity of the
polarization is space variant. Then we introduced the theory of
how to calculate the electromagnetic fields and the energy flow
of tightly focused optical fields, and concentrated on the redis-
tribution of the transverse energy flow of the tightly focused
EV-VOFs, which can transport absorptive particles to fixed lo-
cations. When fanlike phase masks are added on the EV-VOFs,
flexibly controlled transverse energy flow rings can be gained in
the focal plane. Another kind of common phase masks is the
vortex phase mask, with which we can get uniform and non-
uniform transverse energy flows with the shapes of different
polygons. All these flexibly controlled transverse energy flow
rings can transport multiple absorptive particles along certain
paths or to fixed locations, which means multiple particles can
be trapped and transported via the redistribution of the trans-
verse energy flow of tightly focused EV-VOFs.
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