• Laser & Optoelectronics Progress
  • Vol. 59, Issue 12, 1200001 (2022)
Shuqi Mu1、2, Dashan Dong1、2, and Kebin Shi1、2、*
Author Affiliations
  • 1State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/LOP202259.1200001 Cite this Article Set citation alerts
    Shuqi Mu, Dashan Dong, Kebin Shi. Label-Free Optical Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1200001 Copy Citation Text show less
    References

    [1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [3] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [4] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [5] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [6] Izeddin I, Récamier V, Bosanac L et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus[J]. eLife, 3, e02230(2014).

    [7] Xu K, Zhong G S, Zhuang X W. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 339, 452-456(2013).

    [8] Zernike F. How I discovered phase contrast[J]. Science, 121, 345-349(1955).

    [9] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [10] Schnars U, Jüptner W P. Digital recording and reconstruction of holograms in hologram interferometry and shearography[J]. Applied Optics, 33, 4373-4377(1994).

    [11] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).

    [12] Wyant J C. Interferometric optical metrology: basic principle and new system[J]. Laser Focus, 18, 65-71(1982).

    [13] Shaked N T, Zhu Y Z, Rinehart M T et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 17, 15585-15591(2009).

    [14] Xue L, Lai J C, Wang S Y et al. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells[J]. Biomedical Optics Express, 2, 987-995(2011).

    [15] Han J H, Gao P, Yao B L et al. Slightly off-axis interferometry for microscopy with second wavelength assistance[J]. Applied Optics, 50, 2793-2798(2011).

    [16] Min J W, Yao B L, Gao P et al. Dual-wavelength slightly off-axis digital holographic microscopy[J]. Applied Optics, 51, 191-196(2012).

    [17] Guo R L, Yao B L, Min J W et al. LED-based digital holographic microscopy with slightly off-axis interferometry[J]. Journal of Optics, 16, 125408(2014).

    [18] Guo C S, Sha B, Xie Y Y et al. Zero difference algorithm for phase shift extraction in blind phase-shifting holography[J]. Optics Letters, 39, 813-816(2014).

    [19] Kim Y, Shim H, Kim K et al. Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells[J]. Optics Express, 22, 10398-10407(2014).

    [20] Hsu W C, Su J W, Tseng T Y et al. Tomographic diffractive microscopy of living cells based on a common-path configuration[J]. Optics Letters, 39, 2210-2213(2014).

    [21] Yaghoubi S H S, Ebrahimi S, Dashtdar M et al. Common-path, single-shot phase-shifting digital holographic microscopy using a Ronchi ruling[J]. Applied Physics Letters, 114, 183701(2019).

    [22] Bianco V, Mandracchia B, Marchesano V et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide[J]. Light: Science & Applications, 6, e17055(2017).

    [23] Mandracchia B, Bianco V, Wang Z et al. Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting[J]. Lab on a Chip, 17, 2831-2838(2017).

    [24] Zheng G A, Horstmeyer R, Yang C H. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [25] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [26] Rodenburg J M, Hurst A C, Cullis A G et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 98, 034801(2007).

    [27] Maiden A M, Rodenburg J M, Humphry M J. Optical ptychography: a practical implementation with useful resolution[J]. Optics Letters, 35, 2585-2587(2010).

    [28] Kim M, Choi Y, Fang-Yen C et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Optics Letters, 36, 148-150(2011).

    [29] Turpin T M, Gesell L H, Lapides J et al. Theory of the synthetic aperture microscope[J]. Proceedings of SPIE, 2566, 230-240(1995).

    [30] Di J L, Zhao J L, Jiang H Z et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning[J]. Applied Optics, 47, 5654-5659(2008).

    [31] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).

    [32] Tian L, Liu Z J, Yeh L H et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2, 904-911(2015).

    [33] Sun J S, Chen Q, Zhang Y Z et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 7, 1336-1350(2016).

    [34] He X L, Liu C, Zhu J Q. Single-shot Fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 43, 214-217(2018).

    [35] Lee W, Jung D, Ryu S et al. Single-exposure quantitative phase imaging in color-coded LED microscopy[J]. Optics Express, 25, 8398-8411(2017).

    [36] Pan A, Shen C, Yao B L et al. Single-shot Fourier ptychographic microscopy via annular monochrome LED array[C], FTh3F.4(2019).

    [37] Bian L H, Suo J L, Situ G H et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 39, 6648-6651(2014).

    [38] Zhang Y B, Jiang W X, Tian L et al. Self-learning based Fourier ptychographic microscopy[J]. Optics Express, 23, 18471-18486(2015).

    [39] Jiang S W, Guo K K, Liao J et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow[J]. Biomedical Optics Express, 9, 3306-3319(2018).

    [40] Li S, Deng M, Lee J et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 5, 803-813(2018).

    [41] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [42] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).

    [43] Chowdhury S, Chen M, Eckert R et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images[J]. Optica, 6, 1211-1219(2019).

    [44] Horstmeyer R, Chung J, Ou X Z et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).

    [45] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [46] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).

    [47] Wojtkowski M, Bajraszewski T, Targowski P et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Optics Letters, 28, 1745-1747(2003).

    [48] Yun S, Tearney G, Bouma B et al. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength[J]. Optics Express, 11, 3598-3604(2003).

    [49] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).

    [50] Meng J. Development and application of Doppler optical coherence tomography[D](2010).

    [51] Ren H W, Brecke K M, Ding Z H et al. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography[J]. Optics Letters, 27, 409-411(2002).

    [52] Røyset A, Støren T, Stabo-Eeg F et al. Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography[J]. Proceedings of SPIE, 6079, 384-391(2006).

    [53] Ahn Y C, Jung W, Chen Z P. Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography[J]. Optics Letters, 32, 1587-1589(2007).

    [54] Freiberg F J, Pfau M, Wons J et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 254, 1051-1058(2016).

    [55] Wang W L, Hu X H. Application value of FFA and OCT in diagnosis of central retinal artery and vein occlusion[J]. International Eye Science, 16, 1946-1948(2016).

    [56] Choma M, Sarunic M, Yang C H et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [57] Heise B, Schausberger S E, Häuser S et al. Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research[J]. Optical Fiber Technology, 18, 403-410(2012).

    [58] Grebenyuk A A, Ryabukho V P. Numerical correction of coherence gate in full-field swept-source interference microscopy[J]. Optics Letters, 37, 2529-2531(2012).

    [59] Izatt J A, Swanson E A, Fujimoto J G et al. Optical coherence microscopy in scattering media[J]. Optics Letters, 19, 590-592(1994).

    [60] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [61] Ding Z H, Ren H W, Zhao Y H et al. High-resolution optical coherence tomography over a large depth range with an axicon lens[J]. Optics Letters, 27, 243-245(2002).

    [62] Liu L B, Liu C, Howe W C et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy[J]. Optics Letters, 32, 2375-2377(2007).

    [63] Leitgeb R A, Villiger M, Bachmann A H et al. Extended focus depth for Fourier domain optical coherence microscopy[J]. Optics Letters, 31, 2450-2452(2006).

    [64] Rolland J P, Meemon P, Murali S et al. Gabor-based fusion technique for Optical Coherence Microscopy[J]. Optics Express, 18, 3632-3642(2010).

    [65] Chen Z J, Yang S H, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 41, 1636-1639(2016).

    [66] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1, 153-156(1969).

    [67] Lauer V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope[J]. Journal of Microscopy, 205, 165-176(2002).

    [68] Jin D, Zhou R J, Yaqoob Z et al. Tomographic phase microscopy: principles and applications in bioimaging[J]. Journal of the Optical Society of America B, 34, B64-B77(2017).

    [69] Kim T, Zhou R J, Mir M et al. White-light diffraction tomography of unlabelled live cells[J]. Nature Photonics, 8, 256-263(2014).

    [70] Zhou R J, Kim T, Goddard L L et al. Inverse scattering solutions using low-coherence light[J]. Optics Letters, 39, 4494-4497(2014).

    [71] Dong D S, Huang X S, Li L J et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome[J]. Light: Science & Applications, 9, 11(2020).

    [72] Cotte Y, Toy F, Jourdain P et al. Marker-free phase nanoscopy[J]. Nature Photonics, 7, 113-117(2013).

    [73] Momey F, Berdeu A, Bordy T et al. Lensfree diffractive tomography for the imaging of 3D cell cultures[J]. Biomedical Optics Express, 7, 949-962(2016).

    [74] Kuś A, Krauze W, Kujawińska M. Active limited-angle tomographic phase microscope[J]. Journal of Biomedical Optics, 20, 111216(2015).

    [75] Chowdhury S, Eldridge W J, Wax A et al. Refractive index tomography with structured illumination[J]. Optica, 4, 537-545(2017).

    [76] Lee K, Kim K, Kim G et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography[J]. Optics Letters, 42, 999-1002(2017).

    [77] Charrière F, Marian A, Montfort F et al. Cell refractive index tomography by digital holographic microscopy[J]. Optics Letters, 31, 178-180(2006).

    [78] Sung Y, Choi W, Fang-Yen C et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).

    [79] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[J]. Biomedical Optics Express, 7, 3940-3950(2016).

    [80] Bao Y J, Gaylord T K. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 33, 2125-2136(2016).

    [81] Soto J M, Rodrigo J A, Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy[J]. Optics Express, 25, 15699-15712(2017).

    [82] Soto J M, Rodrigo J A, Alieva T. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy[J]. Applied Optics, 57, A205-A214(2018).

    [83] Li J J, Chen Q, Sun J S et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 9, 2526-2542(2018).

    [84] Li J J, Matlock A, Li Y Z et al. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy[J]. Photonics Research, 8, 1818-1826(2020).

    [85] Descloux A, Grußmayer K S, Bostan E et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy[J]. Nature Photonics, 12, 165-172(2018).

    [86] Gerchberg R W. Super-resolution through error energy reduction[J]. Optica Acta: International Journal of Optics, 21, 709-720(1974).

    [87] Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation[J]. IEEE Transactions on Circuits and Systems, 22, 735-742(1975).

    [88] Charbonnier P, Blanc-Feraud L, Aubert G et al. Deterministic edge-preserving regularization in computed imaging[J]. IEEE Transactions on Image Processing, 6, 298-311(1997).

    [89] Delaney A H, Bresler Y. Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 7, 204-221(1998).

    [90] LaRoque S J, Sidky E Y, Pan X C. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25, 1772-1782(2008).

    [91] Lim J, Lee K, Jin K H et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[J]. Optics Express, 23, 16933-16948(2015).

    [92] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Optical tomographic image reconstruction based on beam propagation and sparse regularization[J]. IEEE Transactions on Computational Imaging, 2, 59-70(2016).

    [93] Lim J, Ayoub A B, Antoine E E et al. High-fidelity optical diffraction tomography of multiple scattering samples[J]. Light: Science & Applications, 8, 82(2019).

    [94] Chen M, Ren D, Liu H Y et al. Multi-layer born multiple-scattering model for intensity-based 3D phase microscopy[J]. Optica, 7, 394-403(2020).

    [95] Chaumet P C, Belkebir K. Three-dimensional reconstruction from real data using a conjugate gradient-coupled dipole method[J]. Inverse Problems, 25, 024003(2009).

    [96] Kamilov U S, Liu D H, Mansour H et al. A recursive born approach to nonlinear inverse scattering[J]. IEEE Signal Processing Letters, 23, 1052-1056(2016).

    [97] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [98] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Advances in Optics and Photonics, 8, 586-617(2016).

    [99] Yao J J, Wang L V. Photoacoustic tomography: fundamentals, advances and prospects[J]. Contrast Media & Molecular Imaging, 6, 332-345(2011).

    [100] Laufer J, Norris F C, Cleary J O et al. In vivo photoacoustic imaging of mouse embryos[J]. Journal of Biomedical Optics, 17, 061220(2012).

    [101] Dima A, Burton N C, Ntziachristos V. Multispectral optoacoustic tomography at 64, 128, and 256 channels[J]. Journal of Biomedical Optics, 19, 036021(2014).

    [102] Merčep E, Herraiz J L, Deán-Ben X L et al. Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals[J]. Light: Science & Applications, 8, 18(2019).

    [103] Zhang H F, Maslov K, Stoica G et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 24, 848-851(2006).

    [104] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008).

    [105] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 36, 1236-1238(2011).

    [106] Campagnola P J, Loew L M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nature Biotechnology, 21, 1356-1360(2003).

    [107] Nucciotti V, Stringari C, Sacconi L et al. Probing myosin structural conformation in vivo by second-harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 7763-7768(2010).

    [108] Campagnola P J, Millard A C, Terasaki M et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues[J]. Biophysical Journal, 82, 493-508(2002).

    [109] Lin C Y, Hovhannisyan V A, Wu J T et al. Label-free imaging of Drosophila larva by multiphoton autofluorescence and second harmonic generation microscopy[J]. Journal of Biomedical Optics, 13, 050502(2008).

    [110] Bancelin S, Couture C A, Pinsard M et al. Probing microtubules polarity in mitotic spindles in situ using interferometric second harmonic generation microscopy[J]. Scientific Reports, 7, 6758(2017).

    [111] Zheng Z, Li D Y, Liu Z Y et al. Aggregation-induced nonlinear optical effects of AIEgen nanocrystals for ultradeep in vivo bioimaging[J]. Advanced Materials, 31, e1904799(2019).

    [112] Tserevelakis G J, Filippidis G, Fotakis C et al. Cell tracking in live caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements[J]. Journal of Biomedical Optics, 16, 046019(2011).

    [113] Dietzel S, Pircher J, Nekolla A K et al. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy[J]. PLoS One, 9, e99615(2014).

    [114] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [115] Duncan M D, Reintjes J, Manuccia T J. Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope[J]. Optical Engineering, 24, 352-355(1985).

    [116] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).

    [117] Hashimoto M, Araki T, Kawata S. Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration[J]. Optics Letters, 25, 1768-1770(2000).

    [118] Potma E O, de Boeij W P, van Haastert P J M et al. Real-time visualization of intracellular hydrodynamics in single living cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 98, 1577-1582(2001).

    [119] Cheng J X, Volkmer A, Book L D et al. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity[J]. The Journal of Physical Chemistry B, 105, 1277-1280(2001).

    [120] Cheng J X, Book L D, Xie X S. Polarization coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 26, 1341-1343(2001).

    [121] Volkmer A, Book L D, Xie X S. Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay[J]. Applied Physics Letters, 80, 1505-1507(2002).

    [122] Potma E O, Evans C L, Xie X S. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging[J]. Optics Letters, 31, 241-243(2006).

    [123] Lu F K, Zheng W, Huang Z W. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light[J]. Optics Letters, 34, 1870-1872(2009).

    [124] Hajek K M, Littleton B, Turk D et al. A method for achieving super-resolved widefield CARS microscopy[J]. Optics Express, 18, 19263-19272(2010).

    [125] Heuke S, Legesse F B, Akimov D et al. Bessel beam coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 32, 1773-1779(2015).

    [126] Shi K B, Li H F, Xu Q et al. Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging[J]. Physical Review Letters, 104, 093902(2010).

    [127] Lü Y G, Ji Z H, Yang H et al. Background-free 3D chemical imaging based on polarization coherent Raman holography[J]. Optics Letters, 40, 2095-2098(2015).

    [128] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857(2008).

    [129] Liao C S, Slipchenko M N, Wang P et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy[J]. Light: Science & Applications, 4, e265(2015).

    [130] Liao C S, Wang P, Wang P et al. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons[J]. Science Advances, 1, e1500738(2015).

    [131] Suhalim J L, Chung C Y, Lilledahl M B et al. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy[J]. Biophysical Journal, 102, 1988-1995(2012).

    [132] Andresen E R, Berto P, Rigneault H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse[J]. Optics Letters, 36, 2387-2389(2011).

    [133] Karpf S, Eibl M, Wieser W et al. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy[J]. Nature Communications, 6, 6784(2015).

    [134] Zhang D L, Wang P, Slipchenko M N et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis[J]. Analytical Chemistry, 85, 98-106(2013).

    [135] Wang K, Zhang D L, Charan K et al. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis[J]. Journal of Biophotonics, 6, 815-820(2013).

    [136] Zhang D L, Slipchenko M N, Cheng J X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss[J]. The Journal of Physical Chemistry Letters, 2, 1248-1253(2011).

    [137] Li J J, Cheng J X. Direct visualization of de novo lipogenesis in single living cells[J]. Scientific Reports, 4, 6807(2014).

    [138] Wei L, Yu Y, Shen Y H et al. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 11226-11231(2013).

    [139] Wei L, Shen Y H, Xu F et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling[J]. ACS Chemical Biology, 10, 901-908(2015).

    [140] Ji M B, Arbel M, Zhang L L et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy[J]. Science Advances, 4, eaat7715(2018).

    [141] Zhang B H, Xu H L, Chen J et al. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering[J]. Theranostics, 11, 3074-3088(2021).

    [142] Yang Y F, Yang Y L, Liu Z J et al. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering[J]. Analytical Chemistry, 93, 6223-6231(2021).

    [143] Zhou Q G, Huang Z M, Zhou W. Research progress and application of polarization imaging technology[J]. Infrared Technology, 43, 817-828(2021).

    [144] Craven-Jones J, Kudenov M W, Stapelbroek M G et al. Preliminary results from an infrared hyperspectral imaging polarimeter[J]. Proceedings of SPIE, 8160, 81600T.

    [145] Kim J, Escuti M J. Snapshot imaging spectropolarimeter utilizing polarization gratings[J]. Proceedings of SPIE, 7086, 708603(2008).

    [146] Miles B H, Goodson R A, Dereniak E L et al. Computed-tomography imaging spectropolarimeter (CTISP): instrument concept, calibration, and results[J]. Proceedings of SPIE, 3754, 235-245(1999).

    [147] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [148] Uno K, Aktalay A, Bossi M L et al. Turn-on mode diarylethenes for bioconjugation and fluorescence microscopy of cellular structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100165118(2021).

    Shuqi Mu, Dashan Dong, Kebin Shi. Label-Free Optical Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1200001
    Download Citation