• Photonics Research
  • Vol. 10, Issue 7, 1787 (2022)
Guowu Zhang1、*, Dan-Xia Xu2, Yuri Grinberg2, and Odile Liboiron-Ladouceur1
Author Affiliations
  • 1Department of Electrical and Computer Engineering, McGill University, Montréal, Quebec H3A 0E9, Canada
  • 2National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
  • show less
    DOI: 10.1364/PRJ.457066 Cite this Article Set citation alerts
    Guowu Zhang, Dan-Xia Xu, Yuri Grinberg, Odile Liboiron-Ladouceur. Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint[J]. Photonics Research, 2022, 10(7): 1787 Copy Citation Text show less
    References

    [1] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351-13367(2013).

    [2] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [3] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [4] D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, D. X. Xu. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).

    [5] A. Y. Piggott, E. Y. Ma, L. Su, G. H. Ahn, N. V. Sapra, D. Vercruysse, J. Vuckovic. Inverse-designed photonics for semiconductor foundries. ACS Photon., 7, 569-575(2020).

    [6] L. Su, D. Vercruysse, J. Skarda, N. V. Sapra, J. A. Petykiewicz, J. Vučković. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020).

    [7] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [8] W. Chang, S. Xu, M. Cheng, D. Liu, M. Zhang. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express, 28, 28343-28351(2020).

    [9] M. P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods, and Applications(2013).

    [10] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [11] S. Yang, H. Jia, L. Zhang, J. Dai, X. Fu, T. Zhou, G. Zhang, L. Yang. Gradient-probability-driven discrete search algorithm for on-chip photonics inverse design. Opt. Express, 29, 28751-28766(2021).

    [12] L. Cheng, S. Mao, Z. Chen, Y. Wang, C. Zhao, H. Y. Fu. Ultra-compact dual-mode mode-size converter for silicon photonic few-mode fiber interfaces. Opt. Express, 29, 33728-33740(2021).

    [13] N. Zhao, S. Boutami, S. Fan. Efficient method for accelerating line searches in adjoint optimization of photonic devices by combining Schur complement domain decomposition and Born series expansions. Opt. Express, 30, 6413-6424(2022).

    [14] S. Boutami, N. Zhao, S. Fan. Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann–Schwinger formalism. Opt. Lett., 45, 595-598(2020).

    [15] N. Zhao, S. Boutami, S. Fan. Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition. Opt. Express, 27, 20711-20719(2019).

    [16] Y. Zhang, S. Yang, A. E. J. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [17] P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, J. Martí. Highly efficient crossing structure for silicon-on-insulator waveguides. Opt. Lett., 34, 2760-2762(2009).

    [18] Y. Zhang, S. Yang, E. J. Lim, G. Lo, T. Baehr-Jones, M. Hochberg. A CMOS-compatible, low-loss and low-crosstalk silicon waveguide crossing. IEEE Photon. Technol. Lett., 25, 422-425(2013).

    [19] P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, O. Sigmund. Topology optimization and fabrication of photonic crystal structures. Opt. Express, 12, 1996-2001(2004).

    [20] J. S. Jensen, O. Sigmund. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl. Phys. Lett., 84, 2022-2024(2004).

    [21] M. Gerken, D. A. Miller. Multilayer thin-film structures with high spatial dispersion. Appl. Opt., 42, 1330-1345(2003).

    [22] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).

    [23] O. D. Miller. Photonic design: from fundamental solar cell physics to computational inverse design(2012).

    [24] A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017).

    [25] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, J. Vučković. Analytical level set fabrication constraints for inverse design. Sci. Rep., 9, 8999(2019).

    [26] N. V. Sapra, D. Vercruysse, L. Su, K. Y. Yang, J. Skarda, A. Y. Piggott, J. Vučković. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron., 25, 6100207(2019).

    [27] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [28] J. L. P. Ruiz, A. A. Amad, L. H. Gabrielli, A. A. Novotny. Optimization of the electromagnetic scattering problem based on the topological derivative method. Opt. Express, 27, 33586-33605(2019).

    [29] J. Huang, J. Yang, D. Chen, X. He, Y. Han, J. Zhang, Z. Zhang. Ultra-compact broadband polarization beam splitter with strong expansibility. Photon. Res., 6, 574-578(2018).

    [30] Y. Augenstein, C. Rockstuhl. Inverse design of nanophotonic devices with structural integrity. ACS Photon., 7, 2190-2196(2020).

    [31] F. Wang, B. S. Lazarov, O. Sigmund. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim., 43, 767-784(2011).

    [32] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, J. Vuckovic. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2018).

    [33] O. Sigmund. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim., 33, 401-424(2007).

    [34] S. Boutami, S. Fan. Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism. Part I. Implementation with the method of discrete dipole approximation. J. Opt. Soc. Am. B, 36, 2378-2386(2019).

    [35] S. Boutami, S. Fan. Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism. Part II. Implementation using standard electromagnetic solvers. J. Opt. Soc. Am. B, 36, 2387-2394(2019).

    [36] S. Boutami, K. Hassan, C. Dupré, L. Baud, S. Fan. Experimental demonstration of silicon photonic devices optimized by a flexible and deterministic pixel-by-pixel technique. Appl. Phys. Lett., 117, 071104(2020).

    [37] E. Khoram, X. Qian, M. Yuan, Z. Yu. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express, 28, 7060-7069(2020).

    [38] M. Zhou, B. S. Lazarov, F. Wang, O. Sigmund. Minimum length scale in topology optimization by geometric constraints. Comp. Methods Appl. Mech. Eng., 293, 266-282(2015).

    [39] M. Schevenels, B. S. Lazarov, O. Sigmund. Robust topology optimization accounting for spatially varying manufacturing errors. Comp. Methods Appl. Mech. Eng., 200, 3613-3627(2011).

    [40] G. Zhang, D.-X. Xu, Y. Grinberg, O. Liboiron-Ladouceur. Topological inverse design of nanophotonic devices with energy constraint. Opt. Express, 29, 12681-12695(2021).

    [41] G. Zhang, O. Liboiron-Ladouceur. Scalable and low crosstalk silicon mode exchanger for mode division multiplexing system enabled by inverse design. IEEE Photon. J., 13, 6601013(2021).

    [42] H. Jia, T. Zhou, X. Fu, J. Ding, L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon., 5, 1833-1838(2018).

    [43] A. Michael, E. Yablonovitch. Leveraging continuous material averaging for inverse electromagnetic design. Opt. Express, 26, 31717-31737(2018).

    [44] Applied Nanotools. https://www.appliednt.com. https://www.appliednt.com

    [45] J. Jhoja, Z. Lu, J. Pond, L. Chrostowski. Efficient layout-aware statistical analysis for photonic integrated circuits. Opt. Express, 28, 7799-7816(2020).

    [46] . Lumerical. https://www.lumerical.com/

    [47] T. V. Vaerenbergh, P. Sun, S. Hooten, M. Jain, Q. Wilmart, A. Seyedi, R. Beausoleil. Wafer-level testing of inverse-designed and adjoint-inspired vertical grating coupler designs compatible with DUV lithography. Opt. Express, 29, 37021-37036(2021).

    [48] O. Sigmund, K. Maute. Topology optimization approaches. Struct. Multidisc. Optim., 48, 1031-1055(2013).

    [49] J. P. Groen, C. R. Thomsen, O. Sigmund. Multi-scale topology optimization for stiffness and de-homogenization using implicit geometry modeling. Struct. Multidiscip. Optim., 63, 2919-2934(2021).

    [50] K. Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim., 12, 555-573(2002).

    [51] . MATLAB.

    [52] . MaxwellFDFD.

    [53] . Trixie.

    Guowu Zhang, Dan-Xia Xu, Yuri Grinberg, Odile Liboiron-Ladouceur. Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint[J]. Photonics Research, 2022, 10(7): 1787
    Download Citation