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In this paper, we present the experimental results for integrated photonic devices optimized with an energy-
constrained inverse design method. When this constraint is applied, optimizations are directed to solutions that
contain the optical field inside the waveguide core medium, leading to more robust designs with relatively larger
minimum feature size. We optimize three components: a mode converter (MC), a 1310 nm/1550 nm wavelength
duplexer, and a three-channel C-band wavelength demultiplexer for coarse wavelength division multiplexing
(CWDM) application with 50 nm channel spacing. The energy constraint leads to nearly binarized structures
without applying independent binarization stage. It also reduces the appearance of small features. In the MC,
well-binarized design, improved insertion loss, and cross talk are obtained as a result. Furthermore, the proposed
constraint improves the robustness to fabrication imperfections as shown in the duplexer design. With energy
constraint optimization, the corresponding spectrum shifts for the duplexer under �10 nm dimensional varia-
tions are reduced from 105 nm to 55 nm and from 72 nm to 60 nm for the 1310 nm and 1550 nm channel,
respectively. In the CWDM demultiplexer, robustness toward �10 nm fabrication error is improved by a factor
of 2. The introduction of the energy constraint into topological optimization demonstrates computational gain
with better-performing designs. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.457066

1. INTRODUCTION

Nanophotonic computational design methods have been inves-
tigated intensively over the past decades [1–15]. Heuristic
methods, such as the genetic algorithm (GA) and particle
swarm optimization (PSO) were first investigated and demon-
strated in nanophotonic design [16–18]. Later, the adjoint
method, which enables efficient gradient calculation with only
two optical simulations, was introduced into computational
methods for nanophotonic design [19–21]. At the same time,
the introduction of level-set [22–26] and density topology
[27–30] provided a systematic way to represent design possibil-
ities and, thus, enabled the gradient-based algorithm to further
explore the design parameter space. In the level-set method,
only the boundary of the design is allowed to be optimized,
while in the density topology-based optimization, the permit-
tivity values of the design can be changed continuously provid-
ing an enormous design parameter space for the optimization to
explore. With such a large possible design space to explore,
density topology-based optimization typically converges to a
local minimum quickly with remarkable device performance.
However, allowing a continuous permittivity poses another

problem as intermediate permittivity values do not usually
correspond to real materials. To address this problem, several
methods are proposed such as adding a binarization process
during which the intermediate permittivity values are
gradually removed [31], neighbor-biasing [32], and adding an
explicit objective function for measuring the binarization of the
design [33].

Topologically optimized designs typically include minimum
size features that violate the lithography limitations of current
nanofabrication technologies. To ensure the optimized designs
meet the minimum feature size requirement for a given
foundry, several techniques have been proposed. For example,
pixel-by-pixel optimization has been proposed and demon-
strated where the dimension of a pixel is set to be larger than
the predefined minimum feature size [34–36]. Besides, adding
minimum length scale control during the optimization process
has also been proposed to guarantee the final design’s minimum
feature size larger than the predefined value [25,37,38].

Another shortcoming is that the robustness toward fabrica-
tion error of the topologically optimized designs is difficult to
explicitly optimize. Indeed, the performance of the fabricated
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devices often deviates from the optimized results. One existing
solution is to take into account possible fabrication errors dur-
ing the optimization process so that the optimized designs still
operate well over a certain range of their realizations [39].
However, this inevitably increases the required computational
resources.

In our previous work [40], we proposed a novel approach of
applying an energy constraint in the optimization process that
maximizes the optical energy residing in the silicon regions, or
equivalently minimizes the energy inside the surrounding sil-
icon dioxide cladding. By applying energy constraint, the opti-
mization is naturally guided to a nearly binarized device. As
most of the energy is confined inside the silicon, less energy
will interact with the boundaries. Thus, robustness toward fab-
rication errors of the final optimized designs is improved. In
addition, this constraint inhibits the generation of small fea-
tures during optimization. Our previously published theoretical
work was based on a 2D simulation to illustrate the principle,
while in this paper the energy constraint is applied to 3D opti-
mization for experimental device implementation. We demon-
strate the benefits of applying energy constraint to the
topological optimization of three types of devices: a mode con-
verter (MC), an O-band/C-band duplexer, and a C-band three-
channel wavelength division multiplexing (WDM) demulti-
plexer with 50 nm channel spacing. Specifically, we show
how applying energy constraint benefits the binarization of
the design during the optimization process, reducing the pres-
ence of small features and improving the robustness toward fab-
rication error. The results of a collection of 15 designs from
different inverse design initialization for an O-band/C-band
duplexer demonstrate the statistical generality of these improve-
ments. Then, the optimized designs with our proposed en-
ergy constraint are fabricated using a commercial electron
beam lithography (EBL), and the experimental characteriza-
tion of the device performance is presented to validate the
improvement.

2. OPTIMIZATION RESULTS AND COMPARISON

The proposed devices are designed for fabrication on a silicon-
on-insulator (SOI) chip with an optical waveguide thickness of
220 nm. The theoretical basis and 2D algorithm implementa-
tion are presented in Ref. [40]. The 3D implementation details
are discussed in Appendix A so that we can focus on the opti-
mization and experimental results in the main text. Three dif-
ferent functional devices are optimized in this work, that is an
MC, a 1310 nm/1550 nm wavelength duplexer, and a three-
channel coarse wavelength division multiplexing (CWDM) de-
multiplexer with 50 nm channel spacing.

A. Mode Converter

1. Optimization Results for Mode Converter
MCs offer essential optical functions in mode division multi-
plexing (MDM) systems and are widely used as design proto-
typical examples for inverse design in the literature [15,30]. In
this section, we design an MC between the fundamental trans-
verse electric field (TE0) and the second-order transverse elec-
trical field (TE1). We show how applying energy constraint

benefits the binarization of the design during the optimization
process, thereby reducing the computation cost.

In our optimization configuration, the fundamental mode
(TE0) is excited at the input waveguide, with the goal of gen-
erating the next high-order mode (TE1) at the output wave-
guide. The dimensions of the input and output waveguides,
the design region, the cross section of the waveguides, and
the position of the monitor (marked by the green dashed line)
are shown in Fig. 1. To benchmark our method, the dimension
of the design region is selected to be 3.2 μm × 1.52 μm similar
to Refs. [41,42]. Accordingly, the electromagnetic objective
function is defined as the mode overlap integral to the desired
mode at the output waveguide. Assuming there is no reflected
wave at the output waveguide, the mode matching integral, η, is
defined by Eq. (1) following Ref. [43], where the surface in-
tegral is normalized to the source optical power Psrc and the
optical power of the desired mode Pm,

η�E,Hm� �
1

4PmPsrc

����
ZZ

A
E ×H�

m · dA
����
2

, (1)

where E is the simulated electric field at the monitor position
andHm is the magnetic field distribution of the desired modem
at the output waveguide. According to the desired input and
output, the electromagnetic objective function for the optimi-
zation is defined as Eq. (2) for a minimization problem. In the
objective function, only the transmission to the desired mode is
included as the cross talk performance is sufficiently low as
illustrated in the following optimization results. Note that the
cross talk penalty can be added to the objective function to
potentially further improve the performance as illustrated in
Ref. [41]. The optimization is carried out at three wavelength
points equally spaced within the wavelength range from
1500 nm to 1600 nm to achieve broadband operation,

FEM�E� � −η�E,HTE1�: (2)

For comparison purposes, we investigate three different op-
timization strategies: gray scale only, baseline, and energy con-
straint. Each of these optimization strategies is detailed in
Appendix A. Fixed computational resources (in this work, it
refers to the number of quasi-Newton algorithm iterations,
which is 300 for this device) are used for all three optimization
strategies. For baseline optimization, the continuous stage and
binarization stage take 200 and 5 × 20 iterations, respectively.
For energy constraint optimization, we modify the objective

Fig. 1. Illustration of the dimensions of the input and output wave-
guides (in red) and the design region (in yellow) for the TE0 to TE1
mode converter.
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function to include both energy constraint and electromagnetic
performance requirements.

The optimization results for the three optimization strate-
gies are shown in Fig. 2. Compared with the gray scale only
optimization, applying the energy constraint improves the de-
sign binarization. This is observed from the reduction of the
intermediate permittivity distribution in the final designs
shown in Fig. 2(a). Indeed, the binarization level b (discussed
in Appendix A.5) increases with the energy constraint coeffi-
cient wc [Fig. 2(b)] when wc is smaller than 0.3 indicating
the benefit of applying energy constraint to binarize the
device. When the energy constraint coefficient is in the range
0.3 < wc < 0.5, the binarization level converges to an opti-
mum design as the device is almost perfectly binarized, and
the insertion loss (IL) performance degradation is trivial. For
wc > 0.5, increasing the energy constraint coefficient does
not improve the binarization level while the IL performance
degrades by approximately 0.15 dB as the optimization empha-
sizes more on the energy constraint. The backreflections ob-
tained in the simulation are below −21 dB and −27 dB for
baseline and wc � 0.3, respectively. The radiation downward
toward the substrate is less than −24 dB and −30 dB for base-
line and wc � 0.3, respectively. For this MC device, energy
constraint benefits the inverse design process by guiding the
design to a well-binarized device.

Designs from the baseline and energy constraint wc � 0.3
are selected for fabrication since the gray scale only optimiza-
tion generates designs with intermediate permittivity values and
the performance degradation is nontrivial after converting the
design onto a GDS layout file. The final layout is generated
using a direct binarization method described by Eq. (A15)
in Appendix A.

2. Experimental Results for Mode Converter
The devices are fabricated using 100 keV EBL at Applied
Nanotools (ANT) [44]. The silicon device layer patterning

is followed by an inductively coupled plasma-induced reactive
ion etching (ICP-RIE) process. A 2.2 μm cladding oxide layer is
deposited onto the device using a plasma-enhanced chemical
vapor deposition (PECVD) process to protect the silicon layer.
The recommended minimum features are specified as 60 nm.
The mean and standard width variations for a 500 nm wave-
guide are found to be 6.295 nm and 1.132 nm, respectively
[45]. The correlation length for this variation is found to be
12.23 mm.

The IL and cross talk performance for the fabricated MCs
are characterized first. Figures 3(a) and 3(b) show the optical
image of the fabricated MC test structures. Figure 3(c) shows
the SEM images of the fabricated MC for baseline and energy
constraint scenarios. To investigate the IL performance, two,
four, six, and eight MCs are cascaded to accumulate enough
loss. The IL performance is then calculated from these measure-
ment results using the least squares (LS) regression. The cross
talk performance of the MCs is measured using an adiabatic
directional coupler (ADC)-based mode multiplexer and demul-
tiplexer to generate the required TE1 modes, a device we pre-
viously demonstrated [41]. The measurements are conducted
with a testbed comprising a C-band tunable laser (Keysight
8164B), a polarization controller, a 12-channel fiber array, fiber
alignment stages, and an optical powermeter. A pair of grating
couplers is used to receive (transmit) the light from the single-
mode fibers (the chip) onto the chip (the single-mode fiber). All
continuous wave (CW) measurements are normalized to a
loopback structure that connects two grating couplers with a
short waveguide. The measured IL for the loopback structure
is approximately 16 dB at 1550 nm.

Figure 3(d) shows the normalized measured transmission
spectrum for the MCs. The results show that the devices opti-
mized with energy constraint perform slightly better than the
baseline case. Specifically, the IL at 1550 nm for energy-
constrained MC is 0.18 dB whereas 0.34 dB for the baseline
case. The corresponding cross talk is −26.7 dB and −23.0 dB.
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Fig. 2. (a) Initial and optimized mode converters for gray scale optimization strategies (note that wc � 0 corresponds to a gray scale optimization),
baseline, and with energy constraint coefficients wc of 0.1, 0.3, 0.5, 0.7, and 0.9; (b) insertion loss and binarization level as a function of the energy
constraint coefficient parameter wc (horizontal purple dashed line, IL performance of the baseline design; horizontal light blue dashed line, binar-
ization level of the baseline design); energy intensity distribution for the optimized designs (c) without and (d) with energy constraint.
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For MCs that have relatively simple shapes, the improvement
over the baseline case is limited because the energy is already
well-confined inside silicon without much interaction with the
boundary in the baseline case. To compare our experimental
results with the performance of other inverse-designed MCs/
exchangers, we summarize the performance of our device and
previous reported works in Table 1.

B. Broadband 1310 nm/1550 nm Wavelength
Duplexer

1. Optimization Results for 1310 nm/1550 nm Wavelength
Duplexer
In this section, a broadband TE mode 1310 nm/1550 nm
wavelength duplexer, an important device in WDM systems,
is optimized. These wavelength sensitive devices are ideal for
quantifying the robustness toward fabrication error since fab-
rication variations lead to detrimental spectral response shifts
[32,40]. The dimensions of the input and output waveguide,
the design region, and the position of the monitor (marked
using green dashed lines) are shown in Fig. 4(a). The design
region is set to 3.2 μm × 3 μm according to a previous publi-
cation [2]. The distance between the two output waveguides is
set to be 2 μm to ensure lower enough coupling between them.
Here the optimization seeks to maximize the transmission of
1310 nm (1550 nm) light into CH1 (CH2) while minimizing

the transmission of the 1550 nm (1310 nm) input into CH1
(CH2). The corresponding electromagnetic objective function
is defined in Eq. (3). Note that the “1” and “0” in Eq. (3) re-
present the target transmission. The optimization is carried out
at eight wavelength points with four equally spaced points from
1275 nm to 1365 nm and another four equally spaced points
from 1515 nm to 1605 nm, as shown in Fig. 4(b),

FEM�E1310,E1550�
� jη�E1310,H1310,CH1� − 1j2 � jη�E1550,H1550,CH2� − 1j2
� jη�E1310,H1310,CH2� − 0j2 � jη�E1550,H1550,CH1� − 0j2:

(3)

As was the case for the MC, the gray scale only, baseline, and
energy constraint optimizations are investigated. We use 450
quasi-Newton algorithm iterations for all three optimization
strategies for this device. For baseline optimization, the con-
tinuous stage and binarization stage take 200 and 5 × 50 iter-
ations, respectively. Each complete 3D optimization takes 12 h
on our GPU cluster.

The optimization results for the three optimization strate-
gies are shown in Fig. 5(a). Similar to the observations made
about the MC optimization, applying energy constraint
improves the binarization of the design. The field energy

Fig. 3. Optical image of the test structures for characterizing the mode converter in terms of (a) IL performance and (b) cross talk performance;
(c) SEM images for the fabricated design of the baseline (left) and energy constraint strategies (right); (d) measured IL and XT for the mode converter
designed by the baseline (solid line) and energy constraint strategies (dashed line); right part shows the zoom in version of the measured IL per-
formance.

Table 1. Comparison of the Performance of Mode Converters with the Previous Reported Inversely Designed Mode
Converters/Exchangers

Ref. Footprint (μm2) BW (nm) XT (dB) IL (dB) Time (h) Hardware

[41] 4 × 4 100 –22.0 0.34 36 Intel Core i7-8700 CPU
[42] 4 × 1.6 40 –9.1 1.34 50 Intel Xeon E5 2697 v3 CPU
This work (baseline) 3.2 × 1.52 100 –23.0 0.34 4 NVidia V100 GPU
This work (wc � 0.3) 3.2 × 1.52 100 –26.7 0.18 4 NVidia V100 GPU
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distribution in Fig. 5(b) for the baseline (left) and energy con-
straint optimization (right) strategies shows how the energy is
well-confined inside silicon after applying energy constraints
and has less interaction with the device boundary. This can
be confirmed by the 1550 nm energy (red in the figure) that
goes into CH2 passing through several holes (circled using blue
dashed line) for the baseline case whereas none was encoun-
tered in the energy constraint case. The energy constraint ob-
jective function F energy values after the optimizations are 0.055
and 0.090 for the cases with and without (baseline) energy con-
straint, correspondingly. We can also observe that the baseline
optimization strategy produces smaller features compared with
energy constraint optimization. One explanation is that small
features lead to weak field confinement or strong coupling,
which is not favored by the energy constraint. The simulated
transmission spectra for the duplexers optimized with the base-
line and energy constraint strategies are shown in Figs. 5(c) and
5(d), respectively. The results show the duplexer has an IL of
0.4 dB over a 124 nm 0.5 dB bandwidth and a cross talk of at
most −22.5 dB for the baseline case. For the energy constraint

optimization, the IL obtained is 0.35 dB, and the cross talk is at
most −16.8 dB over a 0.5 dB bandwidth of 122 nm.
Simulation results show that most of the lost power is radiated
out-of-plane upward and downward from the devices. The si-
mulated backreflections are below −17 dB and −23 dB for
baseline and wc � 0.3 at the operating wavelengths, respec-
tively. The radiation downward toward the substrate is below
−26 dB and −27 dB for baseline and wc � 0.3, respectively.
As the devices include multiple optical channels, we present
the performance (i.e., worst IL, cross talk, backreflection, radi-
ation downward toward the substrate, and optical bandwidth)
defined by the worst case among all channels throughout
this paper.

We then investigate through simulations the device’s robust-
ness toward fabrication error under different optimization strat-
egies. Specifically, the boundary is biased to �10 nm, 0 nm,
and −10 nm, and then transmission spectra under these biases
are simulated using commercial software, Ansys Lumerical
FDTD [46]. The simulated spectra shown in Fig. 6 indicate
that the spectrum shift caused by the specified boundary
changes decreases from 80 nm to 60 nm after applying energy
constraint optimization, as characterized by the shifts of the
cross point of transmission curves for CH1 and CH2. The re-
sults validate the improvement of the robustness toward fabri-
cation imperfections.

To validate the generality of the above conclusion, another
15 devices from different random initial parameters for baseline
and energy constraint strategies are optimized, collected, and
analyzed. First, the reduction of small features after applying
energy constraint is investigated. The histograms of the
minimum feature sizes for the 15 optimizations are shown
in Figs. 7(a) and 7(b) for the baseline and energy constraint
scenarios. The result shows that these 15 optimizations from
the baseline strategy all include minimum features less than

Fig. 4. (a) Illustration of the dimensions of the input and output
waveguides (in red) and the design region (in yellow) for the
1310 nm/1550 nm wavelength duplexer; (b) illustration of the wave-
length points at which the optimization is conducted for the 1310 nm
and 1550 nm channels, respectively.

Fig. 5. (a) Initial and optimized 1310 nm/1550 nm wavelength duplexer layouts for different strategies (note that wc � 0 corresponds to the gray
scale optimization); (b) energy intensity distribution inside the optimized designs for baseline (left) and the case with energy constraint coefficient
wc � 0.3 (right) (red, 1550 nm; cyan, 1310 nm); simulated transmission spectrum results from (c) baseline optimization and (d) the case with
energy constraint coefficient wc � 0.3.
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10 nm, which is challenging for today’s fabrication foundry,
whereas only a third of them include minimum features less
than 10 nm after applying energy constraint. Note that, even
though applying energy constraint prevents generating small
features, it does this implicitly, which means it cannot guaran-
tee that the minimum feature size of the final design satisfies the
fabrication foundry’s requirements. In this case, we believe the
optimized design from our energy constraint optimization can
be used as a good initial state for further optimization
(e.g., length scale optimization [25,37,38]) to meet fabrication
requirements. Then, the improvement of the robustness toward
fabrication imperfection by applying energy constraint is inves-
tigated. This is done by simulating the transmission spectrum
of the 15 optimized designs with boundary biased �10 nm to
mimic the fabrication error (illustrated in Fig. 18 of the
Appendix A). The simulated transmission spectra for all these
15 optimized designs are plotted in one figure and shown in
Figs. 7(c) and 7(d) for the baseline and energy constraint
(wc � 0.3), respectively. The spectrum shifts are reduced from
90 nm to 65 nm on average after applying energy constraint.
More interestingly, despite these 15 designs being from differ-
ent random start parameters, the optimized transmission spec-
trum behaves uniformly within the desired bandwidth as
shown in Figs. 7(c) and 7(d).

After optimization, these designs from the baseline and
energy constraint are converted to a GDS file and sent for fab-
rication. As the fabrication error varies from foundry to foundry
or even from different runs of the same foundry, devices with

different boundary biases are fabricated. Specifically, to inves-
tigate robustness toward fabrication error, for each optimized
design, three different versions are included: (1) biased with
an over-etching of 10 nm, (2) nominal design, and (3) biased
with an under-etching of 10 nm. The measured spectrum shifts
for these devices with the intentional fabrication biases illustrate
how applying energy constraint improves the robustness of fab-
ricated designs.

2. Experimental Results for 1310 nm/1550 nm Wavelength
Duplexer
To characterize the performance of the 1310 nm/1550 nm
wavelength duplexer, three tunable lasers (Keysight O-band la-
ser 8164B, Santec ES-band laser TSL-550, Keysight C-band
laser 8164B) are used to cover the whole spectrum range from
1260 nm to 1600 nm. Specifically, the available lasers cover
1260 nm to 1350 nm, 1355 nm to 1480 nm, and 1490 nm
to 1600 nm, respectively, leaving small gaps in the spectral cov-
erage. Two different grating couplers are used. One covers the
O-band, and the other one covers the E-, S-, and C-bands. The
fiber array is tilted to the proper angle to maximize the trans-
mission for the given wavelength range. Both baseline and
energy constraint optimization are investigated here. The ro-
bustness toward fabrication is characterized using the spectrum
shifts under certain fabrication errors. Figure 8 provides the
randomly chosen SEM images of eight fabricated devices for
baseline (top row) and energy constraint (bottom row) scenar-
ios. The structures at the left of the SEM images are used to
calibrate the dimension of the device after fabrication.

The measured transmission spectrum of the optimized de-
vices from a uniform initial distribution is shown in Fig. 9 for
both baseline and energy constraint scenarios. Figures 9(a) and
9(b) show the measured spectrum normalized by the transmis-
sion of the loopback structure. As one may note, the spectrum
shows Fabry–Perot prominent fringes between 1310 nm and
1380 nm and for wavelengths larger than 1580 nm. These
fringes that have approximately 2 nm free spectral range
(FSR) come from the cavity generated by in-waveguide reflec-
tion between the two grating couplers [47]. To obtain a rela-
tively smooth spectrum for the device and remove the impact of
the Fabry–Perot fringes, a moving average smooth filter with a
2 nm window is employed. With this filtering, the spectrum
shifts can be quantified more easily. The measured, normalized,
and smoothed transmission spectra are shown in Figs. 9(c) and
9(d). The results clearly show how the spectrum shift is reduced
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by adding energy constraint. Compared with the baseline case,
the spectrum shifts of the energy-constrained devices are re-
duced from 92 nm to 60 nm. The measured IL from the nomi-
nal baseline optimized design is 1 dB and 1.5 dB at 1310 nm
and 1550 nm, respectively. The corresponding cross talk from
another channel is −18.0 dB and −20.0 dB respectively. The
measured IL from nominal energy-constrained design is
0.75 dB and 1.5 dB at 1310 nm and 1550 nm. The corre-
sponding cross talk from another channel is −23.5 dB and

−26.1 dB, respectively. Note that the experimental cross talk
performance is better than the simulation results, which seems
to contradict the usual expectations. However, it can be ex-
plained by an observed over-etching effect during the fabrica-
tion process, indicated by the spectrum blueshift of the grating
coupler (GC) between simulation and experiment. Also, the
simulation results in Fig. 6 indicate that certain biases can cause
improvement in cross talk performance. This opens another
door for pre-compensating the fabrication error of the opti-
mized design so that the fabricated designs can have a better
performance after fabrication. In addition, the transmission
shows a flat passband profile for both the 1310 nm channel
and 1550 nm channel, which is a desired property for
WDM application. Another interesting finding is that the same
device is duplicated on several positions at an 8 mm × 8 mm
die, and the measured results for these designs at different chip
locations are quite uniform. To compare our experimental re-
sults with the performance of other inverse designed 1310 nm/
1550 nm wavelength duplexers, we summarize the perfor-
mance of our device and previous reported works in Table 2.

The generality of the improvement in robustness toward
�10 nm fabrication error is validated by experimental results
of different 1310 nm/1550 nm wavelength duplexers opti-
mized from 15 random initializations. The measured, normal-
ized, and smoothed transmission spectra from all these designs
with �10 nm boundary bias are plotted in one figure and
shown in Figs. 10(a) and 10(b) for the baseline and energy con-
straint optimization strategies, respectively. On average, the
spectrum shifts are reduced by 34% by applying energy con-
straint (from 100 nm to 66 nm). More interestingly, even for
these 15 designs resulting from different random initializations,
the measured transmission spectra show certain uniformity
within the desired bandwidth (Fig. 10). Further, the measured
passband shape also shows a flattop in the experimental results.

Fig. 8. SEM images of eight fabricated 1310 nm/1550 nm wavelength duplexers optimized from different random start parameters. Top row,
devices from baseline optimization strategy; bottom row, corresponding devices from energy constraint optimization strategy.
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Fig. 9. Measured and normalized transmission spectrum of the fab-
ricated 1310 nm/1550 nm wavelength duplexer under �10 nm and
0 nm boundary bias for (a) baseline, (b) energy constraint optimiza-
tion; filtered transmission spectrum of the results presented in (a) and
(b) for (c) baseline, (d) energy constraint optimization.

Table 2. Comparison of the Performance of the 1310 nm/1550 nm Wavelength Duplexer with Previous Reported
Inversely Designed 1310 nm/1550 nm Wavelength Duplexers

Ref.
Footprint
(μm2)

3-dB BW
O/C Band (nm) XT (dB)

IL
O/C Band (dB) Time (h) Hardware

[2] 2.8 × 2.8 100/170 –11 1.8/2.4 36 NVidia GTX Titan GPU
This work (baseline) 3.2 × 3 150/170 –15 1/1.5 12 NVidia V100 GPU
This work (wc � 0.3) 3.2 × 3 120/150 –15 0.75/1.5 12 NVidia V100 GPU
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C. C-Band CWDM Demultiplexer

1. Optimization Results for Three-Channel Demultiplexer
In this section, we optimize a TE mode three-channel C-band
CWDM demultiplexer with 50 nm channel spacing which is
more complex compared to the MC and the 1310 nm/
1550 nm wavelength duplexer [32]. The dimension of the

input and output waveguides, the channel specification, and
the design region size are shown in Fig. 11(a). The design re-
gion is set to 6.2 μm × 5.4 μm similar to a previous publication
[32] which is sufficient for this device as validated by the fol-
lowing optimization results. The distance between adjacent
output waveguides is set to be 2 μm to ensure low coupling
between them. Here the optimization seeks to maximize
the transmission of 1500 nm/1550 nm/1600 nm light into
CH1/CH2/CH3 while minimizing the transmission from
other wavelength channels into the corresponding channel.
The electromagnetic objective function is defined accordingly
as Eq. (4). To achieve a flattop passband, the optimization is
carried out at six wavelength points with two wavelength points
for CH1, CH2, and CH3, respectively, as shown in Fig. 11(b),

FEM�E1500,E1550,E1600�
� jη�E1500,H1500,CH1� − 1j2 � jη�E1550,H1550,CH2� − 1j2
� jη�E1600,H1600,CH3� − 1j2
� jη�E1500,H1500,CH2� − 0j2 � jη�E1500,H1500,CH3� − 0j2
� jη�E1550,H1550,CH1� − 0j2
� jη�E1550,H1550,CH3� − 0j2 � jη�E1600,H1600,CH1� − 0j2
� jη�E1600,H1600,CH2� − 0j2: (4)

In this device, only two optimization strategies are consid-
ered: gray scale only optimization and energy constraint opti-
mization. The baseline strategy is not included here as it does
not converge to a binarized design within the allocated
computation resources. Further increasing the iterations in
the binarization stage may help, but it will add additional com-
putation resources. Instead of fixing the energy constraint co-
efficient wc to 0.3 as in Section 2.B, here we vary the energy
constraint coefficient from 0 to 0.9 to investigate the improve-
ments. Note that gray scale only optimization can be viewed as
a special case for energy constraint (when the energy constraint
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Fig. 10. Measured, normalized, and smoothed transmission spectra
of the fabricated 1310 nm/1550 nm wavelength duplexers under dif-
ferent �10 nm boundary bias for the 15 designs optimized from dif-
ferent random initial parameters for (a) baseline and (b) energy
constraint optimization.

Fig. 11. (a) Illustration of the dimensions of the input and output
waveguides (in red) and the design region (in yellow) for the CWDM
demultiplexer. (b) Illustration of the wavelength points at which the
optimization is conducted for the CH1, CH2, and CH3, respectively.
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Fig. 12. (a) Optimized CWDM demultiplexer layouts for different strategies (note that wc � 0 corresponds to the gray scale only optimization);
(b) corresponding energy distribution inside the optimized designs with different energy constraint coefficients; (c) corresponding simulated trans-
mission spectrum for the optimized designs with different parameters wc .
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coefficient is zero). Each of the optimizations takes approxi-
mately 48 h on our GPU cluster.

The optimization results for the energy constraint with differ-
ent energy constraint coefficients are shown in Fig. 12.
Compared with gray scale only optimization (wc � 0), applying
energy constraint clearly shows improvement to binarization of
the designs. The corresponding energy distributions inside the
design region are shown in Fig. 12(b) (blue, 1500 nm; green,
1550 nm; red, 1600 nm). From the results, one can see how
applying energy constraint promotes binarization for the optimi-
zation as well as confining energy inside the silicon with less in-
teraction with the core/cladding boundary. Another finding is
that the island and holes inside the device are becoming more
connected as the energy constraint coefficient increases. This can
be understood as a well-connected device allowing energy to exist
inside the silicon and not go outside of the core medium. The
simulated transmission spectra after optimization are shown in
Fig. 12(c), where increasing the energy constraint coefficient
slightly degrades the optimized device’s optical performance.
Note that the results are obtained by simulating the gray scale
permittivity distribution. Specifically, when the energy constraint
coefficient increases from 0 to 0.9, the IL degrades by 0.8 dB
from 0.2 dB to 1 dB, and the cross talk degrades by 11.0 dB
from −23.0 dB to −12.0 dB. Interestingly, however, the

0.5 dB bandwidth seems to increase slightly from 26 nm to
30 nm as the energy constraint coefficient is increased from 0
to 0.9. The backreflections obtained in the simulation are at
most −20 dB for any wc at the operating wavelengths, and
the corresponding radiation downward to the substrate is at most
−22 dB. As mentioned, the performance is quantified by the
worst performance, including the maximum IL, cross talk, back-
reflection, radiation downward toward the substrate, and smallest
bandwidth among the three channels.

The optimized devices near binarization are converted to
GDS files. For this type of device, we only present three sce-
narios with energy constraint coefficients wc � 0.5, 0.7, and
0.9 as these devices are close to being binarized at the place
where the energy exists so that we expect less performance deg-
radation during the GDS transferring process. Then robustness
toward�10 nm fabrication error is first investigated using sim-
ulation. As shown in the simulation results (Fig. 13), the spec-
trum shifts are reduced with the increase of the energy
constraint coefficient. Specifically, the spectrum shifts are de-
creased from 42 nm to 19 nm, from 50 nm to 21 nm, and
from 35 nm to 23 nm for channels CH1 (1500 nm), CH2
(1550 nm), and CH3 (1600 nm), respectively. The results
are summarized in Table 3 as a comparison with the experi-
mental results.
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Fig. 13. Simulated transmission spectrum of the optimized CWDM demultiplexers under different �10 nm and 0 nm boundary biases opti-
mized with different energy constraint coefficients for CH1 (left), CH2 (middle) and CH3 (right), (a) wc � 0.5, (b) wc � 0.7, and (c) wc � 0.9,
respectively.
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2. Experimental Results for Three-Channel C-band
Demultiplexer
To characterize the performance of the TE mode three-channel
C-band CWDM demultiplexer, two tunable lasers (Santec ES-
band laser TSL-550, Keysight C-band laser 8164B) are used to
cover the spectrum range from 1450 nm to 1650 nm.
Moreover, the spectrum shifts under �10 nm fabrication
biases are used to quantify the robustness toward fabrication
error. For this device, optimized designs with energy constraint
coefficients wc of 0.5, 0.7, and 0.9 are investigated as nearly
binarized designs are obtained at the end of the optimization.
Figure 14(a) shows the SEM images of the fabricated CWDM
wavelength demultiplexer. In addition, we show the overlap of
the desired boundary and fabricated boundary in Fig. 14(b) to

investigate fabrication errors. The results show that the fabri-
cation error is nonuniform within the device footprint.

Figure 14(c) shows the normalized transmission spectrum of
the optimized CWDM demultiplexers with energy constraint
coefficients 0.5, 0.7, and 0.9. Note that the gap in the trans-
mission spectrum from 1480 nm to 1490 nm is due to the
limitation of the tunable bandwidth range for the two tunable
lasers, which also applies to all the measurements throughout
this paper. The measured ILs are 1.6 dB, 1.5 dB, and 1.8 dB for
wc � 0.5, 0.7, 0.9, respectively. The corresponding cross talk is
−19.1 dB, −16.3 dB, and −11.5 dB. One may notice that the
center wavelength shows a blueshift compared with simulation
results in Fig. 12. This is because the fabrication process has an
over-etching fabrication error. To compare our experimental

Fig. 14. (a) SEM images of the fabricated CWDM demultiplexer for wc � 0.5, 0.7, 0.9; (b) zoom-in SEM images with the overlap of the desired
boundary; (c)–(e) measured transmission spectrum of the nominal demultiplexers optimized with energy constraint coefficients wc � 0.5, 0.7, 0.9.

Table 4. Comparison of the Performance of the CWDM Demultiplexers with Previous Reported Inversely Designed
CWDM Demultiplexers

Ref.
Footprint
(μm2)

1-dB/3-dB
BW (nm) XT (dB) IL (dB)

Channel
Spacing (nm) Time (h) Hardware

[32] 5.5 × 4.5 Not reported –11.0 2.82 40 60 NVidia GTX Titan GPU
This work (wc � 0.5) 6.2 × 5.4 19/32 –19.1 1.9 50 48 NVidia V100 GPU
This work (wc � 0.7) 6.2 × 5.4 30/43 –16.3 1.2 50 48 NVidia V100 GPU
This work (wc � 0.9) 6.2 × 5.4 30/47 –11.5 1.8 50 48 NVidia V100 GPU

Table 3. Simulated and Measured Spectrum Shifts for CH1, CH2, and CH3 under Different Energy Constraint
Coefficients for �10 nm Boundary Biases

Channels

Spectrum Shifts (nm)

Simulated Measured

wc � 0.5 wc � 0.7 wc � 0.9 wc � 0.5 wc � 0.7 wc � 0.9

CH1 42 28 19 40 27 20
CH2 50 34 21 60 32 21
CH3 35 30 23 36 30 21
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results with the performance of other inverse designed CWDM
demultiplexers in the literature, we summarize the performance
of our device and previous reported works in Table 4.

The robustness toward fabrication error is investigated next.
Figure 15 shows the measured and normalized transmission
spectrum for the CWDM demultiplexer under�10 nm differ-
ent fabrication biases for optimized designs with energy con-
straint coefficients 0.5, 0.7, and 0.9. The results clearly

show how increasing the energy constraint coefficient improves
the robustness toward fabrication variations. Specifically, the
measured spectrum shifts decrease from 40 nm to 20 nm, from
60 nm to 21 nm, and from 36 nm to 21 nm for CH1, CH2,
and CH3 channel, respectively. These results closely follow the
simulated predictions shown in Fig. 13. To clearly illustrate the
improvement of the robustness, we plot the spectrum shifts as a
function of energy constraint coefficients in Fig. 16.

3. CONCLUSION

In summary, we present the experimental validation of the ben-
efits of applying energy constraint in topological inverse design.
Both the theoretical implementation details and the experimen-
tal results are presented. By applying this constraint, most of
the energy stays inside silicon regions providing several advan-
tages. First, it promotes binarization in the optimization pro-
cess, thereby reducing the required computation resources.
Second, it generally increases the size of the features. Finally,
it improves robustness to fabrication imperfections due to pro-
cess variations. Three components are optimized to validate the
improvement: (1) a broadband TE0 to TE1 MC, (2) a TE
mode 1310 nm/1550 nm wavelength duplexer, and (3) a
TE mode three-channel CWDM demultiplexer with 50 nm
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Fig. 15. Measured transmission spectrum of the fabricated CWDMdemultiplexers under different�10 nm and 0 nm boundary biases optimized
with different energy constraint coefficients for CH1 (left), CH2 (middle), and CH3 (right), respectively, (a) wc � 0.5, (b) wc � 0.7, and
(c) wc � 0.9.
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Fig. 16. Measured spectrum shifts due to�10 nm etching changes
as a function of the energy constraint coefficient wc for CH1 (blue),
CH2 (green), and CH3 (red).
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channel spacing. In the MC example, we demonstrate that
the applied energy constraint helps binarize the structure
eliminating the additional binarization stage and reducing
the number of small features. For the 1310 nm/1550 nm wave-
length duplexer, aside from the benefits mentioned above,
we also illustrate the improvements to robustness toward fab-
rication errors when energy constraint is applied. Finally,
using the CWDM demultiplexer, we show how robustness
toward fabrication imperfections can be further improved by
increasing the energy constraint coefficient. We believe our
work experimentally validates the benefits of simultaneously
optimizing the device’s optical performance as well as the field
distribution inside the design region to achieve more practical
designs.

APPENDIX A: PRINCIPLES OF INVERSE DESIGN
METHOD WITH ENERGY CONSTRAINT

The formalism of the baseline method and the implementation
details of the 3D optimization method with our energy con-
straint are given in this appendix, building on the 2D formu-
lation published previously [40]. In general, nanophotonic
device design/optimization is equivalent to changing the per-
mittivity distribution within the design region to achieve pre-
defined device performance. Following this logic, we describe
how the permittivity is constructed from the design variables
and then how the optimization of the design variables is
conducted.

1. Design Space Parameterization
In this paper, the density-based topological method [27–30] is
employed as it provides a larger possible design space to explore
compared to the level-set method. The design space parameter-
ization process is shown in Fig. 17. In this method, a normal-
ized design variable ρ �0<ρ<1� is employed to parameterize
the permittivity distribution inside the predefined design re-
gion D, as enclosed by the blue dashed line in Fig. 17(a).
The design variable ρ is first filtered to generate ρ̃. Then, ρ̃
is transformed into a physically feasible distribution ρ̄ through
a processing step called projection. The relations of ρ̄, the fil-
tered field ρ̃, and the design variable ρ are defined as follows:

ρ̃i �
P

j∈D hijρjP
j∈D hij

, (A1)

hij �
�
R − jjri − rjjj

0
,
,
jjri − rjjj ≤ R
otherwise

, (A2)

ρ̄i �
tanh�βγ� � tanh�β�ρ̃i − γ��
tanh�βγ� � tanh�β�1 − γ�� , (A3)

εi � εSiO2
� �εSi − εSiO2

�ρ̄i , (A4)

where h is the 2D linear hat-shaped filter [27] with its coeffi-
cients defined in Eq. (A2). jjri − rjjj defines the distance be-
tween two points in the design region, i and j, where r is
the Euclidean vector from the origin of a corresponding point.
According to Eqs. (A1) and (A2), the ith value of the filtered
distribution ρ̃ is the weighted summation of the elements that
lie within the radius R, where R is the radius of the linear hat-
shaped filter and defines the strength of the weighting in
Eq. (A2). We choose the filter radius R to be 200 nm. Gaussian
blurring is another commonly used technique for achieving
similar goals and producing comparable results [30,33]. We
show the continuous distribution of the hat-shaped filter
h�x, y� in the inset of Fig. 17. β in Eq. (A3) is the parameter
that controls the strength of the projection, and γ is a parameter
between 0 and 1 that defines the midpoint of the projection (set
to 0.5 and referred to as the projection threshold). Increasing
the parameter β corresponds to strengthening the projection as
shown in the inset between Figs. 17(b) and 17(c).
The permittivity distribution εi inside the design region is gen-
erated as Eq. (A4), where εSiO2

and εSi represent the permit-
tivity of silicon and silicon dioxide, respectively.

2. Gray Scale and Baseline Optimization Methods for
Nanophotonic Devices
In the conventional optimization of nanophotonic devices, the
objective function describes the desired performance of the de-
vice and is often related to the pre-defined function of electro-
magnetic field distributions. After defining this performance
objective function F obj�E�, the optimization can be summa-
rized as Eqs. (A5a)–(A5c). To be consistent, the optimization
of nanophotonic devices is set as a minimization problem of the
objective function F obj�E� with respect to the design variable ρ
throughout this paper,

min
ρ
F obj�E� � FEM�E�, (A5a)

subject to Maxwell’s equation in the frequency domain excited
by the source J,

∇ ×
1

μrμ0
∇ × E − ω2ε0εr�ρ�E � −iωJ, (A5b)

0 < ρ < 1: (A5c)

The optimization problem in Eqs. (A5a)–(A5c) is solved
using an iterative quasi-Newton method, limited-memory
Broyden–Fletcher–Goldfarb–Shanno with a box constraint

Fig. 17. Top view illustration of filtering and projection on a pre-
defined design region (dash blue line): (a) design variable of material
distribution ρ ranging between 0 and 1, (b) the variable of material
distribution ρ̃ after filtering using a hat-shaped filter h�x, y� shown
in the insert, (c) the variable of material distribution ρ̄, which is
the projection of the filtered material distribution ρ̃. The inset for pro-
jection shows how changing β will help binarize the structure.
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(L-BFGS-B) algorithm. However, solving the optimization
problem above, which is referred to as gray scale optimization
in this paper, does not generate a binarized design that is ready
for fabrication [31]. A prevalent solution proposed in Ref. [31]
is to divide the optimization into two steps, which is also used
in our paper and referred to as a baseline optimization strategy.
In the first step, the optimization runs with a fixed small binar-
ization parameter β, whereas the parameter β increases gradu-
ally in the second step, which slowly binarizes the design by
removing the intermediate permittivity values. In this work,
a projection strength parameter β of 20 is used for gray scale
only optimization. For the baseline optimization, the optimi-
zation runs with a projection strength parameter β of 20 for a
preset number of iterations. The optimized device is then used
as the initial design for the binarization process, which can be
further divided into five sub-optimizations to gradually binarize
the optimized design. After each sub-optimization, the projec-
tion strength parameter β increases following Eq. (A6), where
βk represents β of the sub-optimization k from 0 to 4:

βk�1 � 4βk �k � 0, 1, 2, 3, 4�: (A6)

3. Density Topology Optimization with Energy
Constraint
Conventional method described above has a few shortcomings.
As mentioned, the final designs may have intermediate permit-
tivity. Then, the final designs typically include small features.
Besides, the robustness toward fabrication variations is not
guaranteed. To tackle these problems, we proposed to apply
energy constraint during the optimization process [40].
With this constraint, not only is the device performance related
to the electromagnetic distribution at the output waveguide op-
timized but the energy of the electromagnetic distribution in-
side the design domain is also optimized. We seek to increase
the energy inside silicon or equivalently decrease the energy in-
side silicon dioxide during the optimization process. Several ad-
vantages are observed by applying energy constraint. First, the
final designs are typically binarized with energy constraint.
Second, there is a significant reduction in the presence of small
features as they often come with less field confinement, which
is disfavored by energy constraint. Finally, the robustness to-
ward boundary shifts is improved as less energy crosses the
boundary between the core and cladding materials.

According to our motivation above, the objective function
for the energy constraint F energy is defined by Eq. (A7). The
theoretical detail can be found in our previous work [40],

F energy �
P

i∈D
1
2 �1 − ρ̄i�εijEij2P
i∈D

1
2 εijEij2

, (A7)

where the numerator represents the energy stored in the elec-
trical field inside the silicon dioxide region while the denom-
inator represents the energy in all the design domain. During
the optimization process, this objective function is minimized,
having the following impacts. First, the energy prefers to exist
in the material region being as close to silicon as possible
(e.g., ρ̄i → 1) as it has less contribution toward F energy.
Second, this constraint encourages us to maximize ρ̄i, which
is equivalent to binarizing the design. Finally, this constraint
can be applied throughout the optimization without the need

to add another binarization process by gradually increasing the
parameter β. For the energy constraint optimization strategy,
the projection strength β is fixed to 20.

With the energy constraint objective term F energy from
Eq. (A7), the overall optimization is formulated as [6,40]

min
ρ
F obj�E� � �1 − wc� × FEM�E� � wc × F energy�ρ,E�,

(A8)

subject to Eqs. (A5b) and (A5c), where wc is a weight factor
that controls the contribution of F energy to the overall optimi-
zation objective function. Larger wc means that the algorithm
emphasizes more the energy constraint objective during the op-
timization. FEM�E� represents the electromagnetic (EM) objec-
tive function, which is often related to the pre-defined function
with respect to the device performance, such as transmission or
spectral profile. We refer to wc as the energy constraint coeffi-
cient in this paper. Instead of adding the energy constraint as a
penalty term in the objective function, it can be directly applied
in the constraints together with Maxwell’s equations. In this case,
the overall optimization problem can be solved using the method
of moving asymptotes (MMA) [48–50].

4. Implementation Detail of the 3D Optimization
In this section, we present the implementation details of
the proposed energy constraint for nanophotonic devices
optimization where the EM simulations are performed in
3D. Specifically, the optimization problems described by
Eqs. (A5a)–(A5c) and (A8) are solved using an iterative
quasi-Newton method, the L-BFGS-B algorithm. In each iter-
ation, the gradient of the objective function over design param-
eters ρ, which is still a 2D distribution in the SOI platform, is
first calculated. Then the L-BFGS-B optimizer updates the de-
sign parameters according to the gradient information from the
current iteration and the estimated second-order information of
the objective function according to the gradient information
from previous iterations. Note that we have shown the calcu-
lation of gradient using either automatic differentiation or
adjoint method in our previous work for 2D optimization sce-
narios [40]. For the 3D case, the overall problem to solve is too
large. Indeed, using only the automatic differentiation is im-
practical to calculate the gradient; thus, we use a hybrid method
in which the automatic differentiation and adjoint method are
combined to calculate the gradient. In our previous work [40],
we show that the gradient of the objective function with energy
constraint can be expressed as

dF obj

dρ
�

X
i

dF obj

dεi

dεi
dρ

, (A9)

dF obj

dεi

�∂F obj

∂εi
�2Re

�∂F obj

∂E

�
∇×

1

μrμ0
∇×−ω2ε0εr�ρ�

�
−1

ω2ε0
dεr
dεi

E
�
,

(A10)

where E is the simulated field distribution, also called forward
field [1–15]. These expressions are valid for either 2D or 3D
implementation. To calculate the gradient of the objective
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function with respect to the design parameters dF obj∕dρ, it is
decomposed into two terms using the chain rule as shown in
Eq. (A9). The gradient of permittivity dF obj∕dεi can be ex-
pressed as Eq. (A10) according to Ref. [40]. By defining a
new field distribution Eadjoint as shown in Eq. (A11),
Eq. (A10) can be further simplified as Eq. (A12). Note that
Eadjoint is referred to as the adjoint field [1–15],

ET
adjoint �

∂F obj

∂E

�
∇ ×

1

μrμ0
∇ × −ω2ε0εr�ρ�

�
−1

, (A11)

dF obj

dεi
� ∂F obj

∂εi
� 2Re

�
ET
adjointω

2ε0
dεr
dεi

E
�
: (A12)

The gradient of the objective function with respect to per-
mittivity is calculated following Eq. (A12). The first term
∂F obj∕∂εi, which is the partial derivative of the objective func-
tion with respect to the permittivity, is calculated using auto-
matic differentiation provided by Deep Learning Toolbox of
MATLAB [51]. The forward and adjoint fields are solved using
an open-source package Maxwell FDFD in MATLAB [52]. In
this work, a uniform grid spacing of 40 nm is selected for the
simulation. The same grid spacing is also used to evaluate the
performance in Ansys Lumerical FDTD after the optimization.
Solving Maxwell’s equations for forward and adjoint problems
is done using one GPU node of the Tesla NVIDIAV100 GPU
[53]. Note that the first term ∂F obj∕∂εi is zero for the baseline
case as the objective function is only related to the EM field at
the output position, whereas it is nonzero for the energy con-
straint case. The overall gradient is then calculated according to
Eq. (A12). After the gradient is calculated, the optimization is
carried out using MATLAB built-in L-BFGS-B algorithm.

5. Characterization Method for Optimization Results
As density topology-based optimization is used, intermediate
permittivity often exists in the final optimized designs.
To quantify how well the optimized designs are binarized,
we define

b � 1 −

P
i∈D 4ρ̄i�1 − ρ̄i�

N
, (A13)

where N is the total number of design parameters in the design
regionD. The parameter b indicates how well the final design is
binarized and varies between 0 and 1. When b equals 1, the
design is fully binarized, which means the design region consists
of either silicon or silicon dioxide, whereas, when b equals 0,
the design is the least binarized, meaning that the permittivity
distribution inside the design domain is exactly in the middle
between silicon and silicon dioxide. We refer to b as the binar-
ization level throughout this paper.

In this work, IL is used to characterize the performance of
the optimized andabricated devices. It is defined as the average
IL over the whole operating wavelength band,

IL � −
1

n

Xn
i�1

10 log10�Pi
desired_mode∕P

i
input�, (A14)

where i represents the ith wavelength point, Pi
input represents

the input power, Pi
desired_mode is the output power on the desired

output mode at the desired output port, and n represents the
overall simulated wavelength points. For MC, n is 3. For the
1310 nm/1550 nm wavelength duplexer and CWDM demul-
tiplexer, n is 8 and 6, respectively.

To evaluate the tolerance to fabrication imperfections,
the final optimized designs are transferred to a layout file
(e.g., GDS file) using direct binarization shown in Eq. (A15)
below. Then, the device is biased to mimic the fabrication
imperfections. Specifically, the boundary is biased by −Δ (in
nm) (erosion/over-etching Δ), 0 nm (normal-etching), and
�Δ (dilation/under-etching Δ). We evaluate the performance
using a commercial software Ansys Lumerical FDTD
[46]. Figure 18 illustrates the boundary bias of an optimized
design,

ε�x, y� �
�
εSi
εSiO2

,
,
ρ̃�x, y� ≥ 0.5
ρ̃�x, y� < 0.5

: (A15)

Fig. 18. (a) Illustration of continuous distribution from optimization; (b) illustration of the GDS transferring process using Eq. (A15); (c) illus-
tration of boundary bias erosion (−10 nm), normal (0 nm), and dilation (�10 nm) at the cross section position; (d) and (e) zoom-in illustration for
part of the design boundary.
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