• Acta Optica Sinica
  • Vol. 38, Issue 6, 0615001 (2018)
Yi Zhang1、2, Zhiyu Xiang1、2、*, Shuya Chen1、2, and Shuxia Gu1、2
Author Affiliations
  • 1 Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, Hangzhou, Zhejiang 310027, China
  • 2 College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China;
  • show less
    DOI: 10.3788/AOS201838.0615001 Cite this Article Set citation alerts
    Yi Zhang, Zhiyu Xiang, Shuya Chen, Shuxia Gu. Optimization on Visual Odometry under Weak Texture Environment[J]. Acta Optica Sinica, 2018, 38(6): 0615001 Copy Citation Text show less
    References

    [1] Scaramuzza D, Fraundorfer F. Visual odometry Part I: the first 30 years and fundamentals[J]. IEEE Robotics & Automation Magazine, 18, 80-92(2011). http://www.mendeley.com/catalog/visual-odometry-part-i-first-30-years-fundamentals/

    [2] Yuan M, Li A H, Zheng Y et al. Point-line feature fusion in monocular visual odometry[J]. Laser & Optoelectronics Progress, 55, 021501(2018).

    [3] Fraundorfer F, Scaramuzza D. Visual odometry Part II: matching, robustness, optimization, and applications[J]. IEEE Robotics & Automation Magazine, 19, 78-90(2012). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6153423

    [4] Nister D, Naroditsky O, Bergen J. Visual odometry[C]. Washington, DC: CVPR, 652-659(2004).

    [5] Lin Z L, Zhang G L, Yao E L et al. Stereo visual odometry based on motion object detection in the dynamic scene[J]. Acta Optica Sinica, 37, 1115001(2017).

    [6] Howard A. Real-time stereo visual odometry for autonomous ground vehicles. [C]∥International Conference on Intelligent Robots and Systems, 3946-3952(2008).

    [7] Escalera A D L, Izquierdo E, Martin D et al. . Stereo visual odometry in urban environments based on detecting ground features[J]. Robotics and Autonomous Systems, 80, 1-10(2016). http://www.sciencedirect.com/science/article/pii/S0921889015303183

    [8] Kreso I, Segvic S. Improving the Egomotion Estimation by correcting the Calibration Bias. [C]∥ International Conference on Computer Vision Theory and Applications. Berlin: VISAPP, 347-356(2015).

    [9] Kitt B, Geiger A, Lategahn H. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. [C]∥Intelligent Vehicles Symposium. La Jolla: IEEE, 486-492(2010).

    [10] Buczko M, Willert V. How to distinguish inliers from outliers in visual odometry for high-speed automotive applications. [C]∥Intelligent Vehicles Symposium. Gothenburg: IEEE, 478-483(2016).

    [11] Fanfani M, Bellavia F, Colombo C. Accurate keyframe selection and keypoint tracking for robust visual odometry[J]. Machine Vision and Applications, 27, 833-844(2016). http://link.springer.com/article/10.1007/s00138-016-0793-3

    [12] Cvisic I, Petrovic I. Stereo odometry based on careful feature selection and tracking. [C]∥European Conference on Mobile Robots. Lincoln: ECMR, 1-6(2015).

    [13] Badino H, Yamamoto A, Kanade T. Visual odometry by multi-frame feature integration. [C]∥ IEEE International Conference on Computer Vision Workshops. Sydney: ICCV, 222-229(2013).

    [14] Rublee E, Rabaud V, Konolige K et al. ORB: an efficient alternative to SIFT or SURF. [C]∥IEEE International Conference on Computer Vision. Barcelona: ICCV, 2564-2571(2011).

    [15] Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 33, 1255-1262(2017). http://ieeexplore.ieee.org/document/7946260/

    [16] Triggs B. McLauchlan P F, Hartley R I, et al. Bundle adjustment: a modern synthesis. [C]∥International Workshop on Vision Algorithms.Springer Berlin Heidelberg, 298-372(1999).

    [17] Liu J, Zhang J X, Dai Y et al. Dense stereo matching based on cross-scale guided image filtering[J]. Acta Optica Sinica, 38, 0115004(2018).

    [18] Zhang Q, Dong Y, Li H B et al. Underwater curve constraint model based on non-parallel binocular vision[J]. Acta Optica Sinica, 36, 0315001(2016).

    [19] Lu W. Research on key techniques of high-precision and real-time visual localization[D]. Hangzhou: Zhejiang University, 9-10(2015).

    [20] Luhmann T, Robson S, Kyle S et al. Close-range photogrammetry and 3D imaging[M]. 2nd ed. Berlin: De Gruyter(2013).

    [21] Kümmerle R, Grisetti G, Strasdat H et al. g2o: a general framework for graph optimization. [C]∥IEEE International Conference on Robotics and Automation. Wellington: ICRA, 3607-3613(2011).

    [22] Geiger A, Lenz P, Stiller C et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 32, 1231-1237(2013). http://dl.acm.org/citation.cfm?id=2528333

    [23] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]∥Conference on Computer Vision and Pattern Recognition, 2012.

    [24] Cvisic I, Cesic J, Markovic I et al. SOFT-SLAM: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles[J]. Journal of Field Robotics, 35, 578-595(2018). http://onlinelibrary.wiley.com/doi/10.1002/rob.21762/full

    [25] Buczko M, Willert V. Flow-decoupled normalized reprojection error for visual odometry. [C]∥2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 1161-1167(2016).

    [26] Pire T, Fischer T, Civera J et al. Stereo parallel tracking and mapping for robot localization. [C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1373-1378(2015).

    Yi Zhang, Zhiyu Xiang, Shuya Chen, Shuxia Gu. Optimization on Visual Odometry under Weak Texture Environment[J]. Acta Optica Sinica, 2018, 38(6): 0615001
    Download Citation