• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021089 (2022)
Shuai-Jun ZHANG1、2, Tian-Xin LI2, Wen-Jing WANG2、3, Ju-Zhu LI2、3, Xiu-Mei SHAO4, Xue LI4, Shi-You ZHENG1, Yue-Peng PANG1、*, and Hui XIA2、**
Author Affiliations
  • 1School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China
  • 4State Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.020 Cite this Article
    Shuai-Jun ZHANG, Tian-Xin LI, Wen-Jing WANG, Ju-Zhu LI, Xiu-Mei SHAO, Xue LI, Shi-You ZHENG, Yue-Peng PANG, Hui XIA. SCM study on the 2D diffusion behavior of p-type impurities in planar InGaAs detectors[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021089 Copy Citation Text show less
    References

    [1] Xiu-Mei Shao, Hai-Mei Gong, Xue Li et al. Developments of high performance short-wave infrared InGaAs focal plane detectors. Infrared Technology, 38, 629-635(2016).

    [2] X Li, H M Gong, J X Fang et al. The development of InGaAs short wavelength infrared focal plane arrays with high performance. Infrared Physics & Technology, 80, 112-119(2017).

    [3] Y Arslan, F Oguz, C Besikci. 640×512 Extended short wavelength infrared In0.83Ga0.17As focal plane array. IEEE Journal of Quantum Electronics, 50, 957-964(2014).

    [4] M J Kappers, T Zhu, S L Sahonta et al. SCM and SIMS investigations of unintentional doping in III-nitrides. Physica Status Solidi (c), 12, 403-407(2015).

    [5] E Peiner. Doping profile analysis in Si by electrochemical capacitance-voltage measurements. Journal of the Electrochemical Society, 142, 576-580(1995).

    [6] S Kechang, J M Baribeau, D C Houghton et al. Determination of the depth distribution of carriers in silicon molecular beam epitaxially grown material by electrochemical capacitance-voltage measurements. Thin Solid Films, 184, 47-54(1990).

    [7] Y Huang, C C Williams, H Smith. Direct comparison of cross-sectional scanning capacitance microscope dopant profile and vertical secondary ion-mass spectroscopy profile. Journal of Vacuum Science & Technology B: Microelectronics & Nanometer Structures, 14, 433-436(1996).

    [8] P Eyben, N Duhayon, C Stuer et al. SSRM and SCM observation of modified lateral diffusion of As, BF2 and Sb induced by nitride spacers. MRS Online Proceedings Library Archive, 669, 781-791(2001).

    [9] H Yin, T X Li, W Wang et al. Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced polarity reversal. Applied Physics Letters, 95, 093506(2009).

    [10] H Yin, Y Li, W Wang et al. Scanning capacitance microscopy characterization on diffused p-n junctions of InGaAs/InP infrared detectors. Proc. of SPIE, 7658, 237-238(2010).

    [11] A W Walker, M W Denhoff. Minority carrier diffusion lengths and mobilities in low-doped n-InGaAs for focal plane array applications. Proc. of SPIE, 10177, 101772D(2017).

    [12] H Xia, T X Li, H J Tang et al. Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector. Scientific Reports, 6, 21544(2016).

    [13] S He, Y Zhao. An experimental investigation of Zn diffusion into InP and InGaAs. Semiconductor Science & Technology, 56, 149-151(2005).

    [14] A Djedidi, A Rouvie, J L Reverchon et al. Investigation of the influence of Zn-diffusion profile on the electrical properties of InGaAs/InP photodiodes(2012).

    [15] Guo-Qiang Hao. Study on physics and devices of InGaAs infrared detectors(2006).

    [16] A R Wichman, R E Dewames, E Bellotti. Three-dimensional numerical simulation of planar P+n heterojunction In0.53Ga0.47As photodiodes in dense arrays part I: dark current dependence on device geometry, 9070, 907003(2014).

    [17] R Dewames, R Littleton, K Witte et al. Electro-Optical characteristics of P+n In0.53Ga0.47As hetero-junction photodiodes in large format dense focal plane arrays. Journal of Electronic Materials, 44, 1-10(2015).

    [18] K Yorinobu, N Naoharu, K Noriyuki et al. Lateral diffusion distance measurement of 40-80 nm junctions by etching/TEM-Electron energy loss spectroscopy method. Japanese journal of applied physics, 38, 2314-2318(1999).

    [19] R J D Tilley. Chapter 7. Diffusion. John Wiley & Sons, Ltd, 203-223(2005).

    [20] J S Kim, S W Lee, H M Kim et al. The contraction of lattice constant and the reduction of growth rate in p-InGaAs grown by organometallic vapor phase epitaxy. Journal of Electronic Materials, 24, 1697-1701(1995).

    [21] Ying-Bin Liu, Hong-Tai Chen, Lin Lin et al. Zn diffusion of InGaAs/InP materials. Semiconductor Technology, 33, 63-65(2008).

    [22] Hong-Hai Deng, Peng Wei, Yao-Ming Zhu et al. Annealing process on Zn diffusion and its application in fabrication of InGaAs detectors. Infrared and Laser Engineering, 41, 279-283(2012).

    [23] G F Redinbo, H G Craighead. Lateral diffusion limitations of InGaAs/GaAs for nanostructure fabrication. Mrs Proceedings, 380, 67-72(1995).

    [24] X Li, H Tang, G Fan et al. 256×1 Element linear InGaAs short wavelength near-infrared detector arrays. Proc. of SPIE, 6835, 683505(2007).

    [25] Tao Li, Yang Wang, Ke-Fu Li et al. Investigation on dark current and low frequency noise of mesa type InGaAs infrared detector. Journal of Optoelectronics·laser, 21, 500-503(2010).

    [26] Heng-Jing Tang, Xiao-Li Wu, Ke-Feng Zhang et al. Current-voltage characteristics of InGaAs linear detector. Infrared and Laser Engineering, 37, 598-601(2008).

    Shuai-Jun ZHANG, Tian-Xin LI, Wen-Jing WANG, Ju-Zhu LI, Xiu-Mei SHAO, Xue LI, Shi-You ZHENG, Yue-Peng PANG, Hui XIA. SCM study on the 2D diffusion behavior of p-type impurities in planar InGaAs detectors[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021089
    Download Citation