• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516014 (2021)
Yuan Liu, Youqiang Huang, Yingjie Zhao, Gongxun Bai*, and Shiqing Xu**
Author Affiliations
  • Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • show less
    DOI: 10.3788/LOP202158.1516014 Cite this Article Set citation alerts
    Yuan Liu, Youqiang Huang, Yingjie Zhao, Gongxun Bai, Shiqing Xu. Luminescence Properties of Doped Two-Dimensional Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516014 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Tan C L, Cao X H, Wu X J et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 117, 6225-6331(2017).

    [3] Yao J, Miao X, Wang S et al. Preparation of graphene-MoS2 vertical heterojunction for high-responsivity photodetectors[J]. Laser & Optoelectronics Progress, 58, 1516005(2021).

    [4] Hu G, Ou Q, Si G et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [5] Xu W S, Kozawa D, Zhou Y Q et al. Controlling photoluminescence enhancement and energy transfer in WS2∶hBN∶WS2 vertical stacks by precise interlayer distances[J]. Small, 16, 1905985(2020).

    [6] Briggs N, Bersch B, Wang Y X et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy[J]. Nature Materials, 19, 637-643(2020).

    [7] Zheng B Y, Zheng W H, Jiang Y et al. WO3-WS2 vertical bilayer heterostructures with high photoluminescence quantum yield[J]. Journal of the American Chemical Society, 141, 11754-11758(2019).

    [8] Seo D M, Lee J H, Lee S et al. Ultrafast excitonic behavior in two-dimensional metal-semiconductor heterostructure[J]. ACS Photonics, 6, 1379-1386(2019).

    [9] Price C C, Frey N C, Jariwala D et al. Engineering zero-dimensional quantum confinement in transition-metal dichalcogenide heterostructures[J]. ACS Nano, 13, 8303-8311(2019).

    [10] Dai Y W, Ren X B, Zhang J Q et al. Multifarious interfaces, band alignments, and formation asymmetry of WSe2-MoSe2 heterojunction grown by molecular-beam epitaxy[J]. ACS Applied Materials & Interfaces, 11, 43766-43773(2019).

    [11] Apte A, Krishnamoorthy A, Hachtel J A et al. Two-dimensional lateral epitaxy of 2H (MoSe2)-1T' (ReSe2) phases[J]. Nano Letters, 19, 6338-6345(2019).

    [12] Kozawa D, Carvalho A, Verzhbitskiy I et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures[J]. Nano Letters, 16, 4087-4093(2016).

    [13] Zhang Z W, Chen P, Duan X D et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices[J]. Science, 357, 788-792(2017).

    [14] Wang Z X, Zhao X X, Yang Y K et al. Phase-controlled synthesis of monolayer W1-xRexS2 alloy with improved photoresponse performance[J]. Small (Weinheim an Der Bergstrasse, Germany), 16, e2000852(2020).

    [15] Zi Y B, Li C, Niu C Y et al. Reversible direct-indirect band transition in alloying TMDs heterostructures via band engineering[J]. Journal of Physics:Condensed Matter, 31, 435503(2019).

    [16] Liang F, Xu H J, Dong Z Y et al. Substrates and interlayer coupling effects on Mo1-xWxSe2 alloys[J]. Journal of Semiconductors, 40, 75-80(2019).

    [17] Zhuang M H, Gan L Y, Zou M C et al. Engineering sub-100 nm Mo1-xWxSe2 crystals for efficient hydrogen evolution catalysis[J]. Journal of Materials Chemistry A, 6, 2900-2907(2018).

    [18] Wang D G, Zhang X W, Guo G C et al. Large-area synthesis of layered HfS2(1-x)Se2x alloys with fully tunable chemical compositions and bandgaps[J]. Advanced Materials, 30, e1803285(2018).

    [19] Susarla S, Hachtel J A, Yang X et al. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys[J]. Advanced Materials, 30, e1804218(2018).

    [20] Park J, Kim M S, Park B et al. Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence[J]. ACS Nano, 12, 6301-6309(2018).

    [21] Bampoulis P, Sotthewes K, Siekman M H et al. Local conduction in MoxW1-xSe2: the role of stacking faults, defects, and alloying[J]. ACS Applied Materials & Interfaces, 10, 13218-13225(2018).

    [22] Yu P, Lin J H, Sun L F et al. Metal-semiconductor phase-transition in WSe2(1-x)Te2x monolayer[J]. Advanced Materials, 29, 1603991(2017).

    [23] Sun Y F, Fujisawa K, Lin Z et al. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties[J]. Journal of the American Chemical Society, 139, 11096-11105(2017).

    [24] Li X F, Puretzky A A, Sang X H et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2[J]. Advanced Functional Materials, 27, 1603850(2017).

    [25] Kobayashi Y, Mori S, Maniwa Y et al. Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys[J]. Nano Research, 8, 3261-3271(2015).

    [26] Apte A, Kochat V, Rajak P et al. Structural phase transformation in strained monolayer MoWSe2 alloy[J]. ACS Nano, 12, 3468-3476(2018).

    [27] Desai S B, Seol G, Kang J S et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2[J]. Nano Letters, 14, 4592-4597(2014).

    [28] Jie W J, Yang Z B, Zhang F et al. Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating[J]. ACS Nano, 11, 6950-6958(2017).

    [29] Wang C, Yang S, Duan M et al. Nonlinear material MXene-enhanced all-optical wavelength converter[J]. Acta Optica Sinica, 41, 1419001(2021).

    [30] Huang X, Zeng Z Y, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications[J]. Chemical Society Reviews, 42, 1934-1946(2013).

    [31] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 102, 10451-10453(2005).

    [32] Wang Q, Zhong Y G, Zhao L Y et al. Lasers based on two-dimensional layered materials[J]. Chinese Journal of Lasers, 47, 0701008(2020).

    [33] Duan X D, Wang C, Fan Z et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties[J]. Nano Letters, 16, 264-269(2016).

    [34] Jie W J, Yang Z B, Bai G X et al. Luminescence in 2D materials and van der Waals heterostructures[J]. Advanced Optical Materials, 6, 1701296(2018).

    [35] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010).

    [36] Padilha J E, Peelaers H, Janotti A et al. Nature and evolution of the band-edge states in MoS2: from monolayer to bulk[J]. Physical Review B, 90, 205420(2014).

    [37] Li H L, Wu X P, Liu H J et al. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution[J]. ACS Nano, 11, 961-967(2017).

    [38] Gusmão R, Sofer Z, Pumera M. Black phosphorus rediscovered: from bulk material to monolayers[J]. Angewandte Chemie International Edition, 56, 8052-8072(2017).

    [39] Bellus M Z, Yang Z B, Hao J H et al. Amorphous two-dimensional black phosphorus with exceptional photocarrier transport properties[J]. 2D Materials, 4, 025063(2017).

    [40] Liu H, Du Y C, Deng Y X et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 44, 2732-2743(2015).

    [41] Li L K, Yu Y J, Ye G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014).

    [42] Eswaraiah V, Zeng Q S, Long Y et al. Black phosphorus nanosheets: synthesis, characterization and applications[J]. Small, 12, 3480-3502(2016).

    [43] Castellanos-Gomez A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 6, 4280-4291(2015).

    [44] Zhang S, Yang J, Xu R J et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J]. ACS Nano, 8, 9590-9596(2014).

    [45] Yang J, Xu R J, Pei J J et al. Optical tuning of exciton and trion emissions in monolayer phosphorene[J]. Light: Science & Applications, 4, e312(2015).

    [46] Yang Z B, Hao J H, Yuan S G et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 27, 3748-3754(2015).

    [47] Wang X, Jones A M, Seyler K L et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 10, 517-521(2015).

    [48] Liu H, Neal A T, Zhu Z et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 8, 4033-4041(2014).

    [49] Tran V, Soklaski R, Liang Y F et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 89, 235319(2014).

    [50] Zhu B, Chen X, Cui X. Exciton binding energy of monolayer WS₂[J]. Scientific Reports, 5, 9218(2015).

    [51] Li Z W, Xiao Y D, Gong Y J et al. Active light control of the MoS2 monolayer exciton binding energy[J]. ACS Nano, 9, 10158-10164(2015).

    [52] Wu Z P, Bai G X, Qu Y Y et al. Deep ultraviolet photoconductive and near-infrared luminescence properties of Er3+-doped β-Ga2O3 thin films[J]. Applied Physics Letters, 108, 211903(2016).

    [53] Lin Y C, Dumcenco D O, Komsa H P et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity[J]. Advanced Materials, 26, 2857-2861(2014).

    [54] Robertson A W, Lin Y C, Wang S S et al. Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2[J]. ACS Nano, 10, 10227-10236(2016).

    [55] Pham V P, Yeom G Y. Recent advances in doping of molybdenum disulfide: industrial applications and future prospects[J]. Advanced Materials, 28, 9024-9059(2016).

    [56] Sun Q C, Yadgarov L, Rosentsveig R et al. Observation of a burstein-moss shift in rhenium-doped MoS2 nanoparticles[J]. ACS Nano, 7, 3506-3511(2013).

    [57] Zhang K H, Feng S M, Wang J J et al. Manganese doping of monolayer MoS2: the substrate is critical[J]. Nano Letters, 15, 6586-6591(2015).

    [58] Gao J, Kim Y D, Liang L et al. Transition-metal substitution doping in synthetic atomically thin semiconductors[J]. Advanced Materials, 28, 9735-9743(2016).

    [59] Bai G X, Yuan S G, Zhao Y D et al. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence[J]. Advanced Materials, 28, 7472-7477(2016).

    [60] Liu Y, Bai G X, Jiang L et al. Lanthanide Nd ion-doped two-dimensional In2Se3 nanosheets with near-infrared luminescence property[J]. Nanophotonics, 9, 2407-2414(2020).

    [61] Liu Y, Bai G X, Lyu Y X et al. Ultrabroadband tuning and fine structure of emission spectra in lanthanide Er-doped ZnSe nanosheets for display and temperature sensing[J]. ACS Nano, 14, 16003-16012(2020).

    [62] Wang C Y, Xu L Y, Jin H N et al. Yb/Er coordinatively doping in bilayer WSe2 for fascinating up-conversion luminescence[J]. Nano Energy, 78, 105317(2020).

    Yuan Liu, Youqiang Huang, Yingjie Zhao, Gongxun Bai, Shiqing Xu. Luminescence Properties of Doped Two-Dimensional Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516014
    Download Citation