• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0727002 (2023)
Yonggang Peng*
Author Affiliations
  • Department of Applied Physics, College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
  • show less
    DOI: 10.3788/LOP220821 Cite this Article Set citation alerts
    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002 Copy Citation Text show less
    References

    [1] Deutsch D. Quantum computational networks[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 425, 73-90(1989).

    [2] Deutsch D, Barenco A, Ekert A. Universality in quantum computation[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 449, 669-677(1995).

    [3] DiVincenzo D P. Two-bit gates are universal for quantum computation[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 51, 1015-1022(1995).

    [4] Barenco A, Bennett C H, Cleve R et al. Elementary gates for quantum computation[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 52, 3457-3467(1995).

    [5] Ralph T C, Resch K J, Gilchrist A. Efficient Toffoli gates using qubits[J]. Physical Review A, 75, 022313(2007).

    [6] Monz T, Kim K, Hänsel W et al. Realization of the quantum Toffoli gate with trapped ions[J]. Physical Review Letters, 102, 040501(2009).

    [7] Jones C. Low-overhead constructions for the fault tolerant Toffoli gate[J]. Physical Review A, 87, 022328(2013).

    [8] Zheng S B. Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 87, 042318(2013).

    [9] Zahedinejad E, Ghosh J, Sanders B C. High-fidelity single-shot Toffoli gate via quantum control[J]. Physical Review Letters, 114, 200502(2015).

    [10] Ru S H, Wang Y L, An M et al. Realization of a deterministic quantum Toffoli gate with a single photon[J]. Physical Review A, 103, 022606(2021).

    [11] Wang J Q, Zhang Y. Non-destructive bell state measurement based on parity gates[J]. Acta Optica Sinica, 41, 2027002(2021).

    [12] de Raedt H. Product formula algorithms for solving the time dependent Schrödinger equation[J]. Computer Physics Reports, 7, 1-72(1987).

    [13] Slichter C P[M]. Principles of magnetic resonance(1990).

    [14] Suzuki I M. General decomposition theory of ordered exponentials[J]. Proceedings of the Japan Academy, Series B, 69, 161-166(1993).

    [15] de Raedt H, Hams A H, Michielsen K et al. Quantum computer emulator[J]. Computer Physics Communications, 132, 1-20(2000).

    [16] Tseng C H, Somaroo S, Sharf Y et al. Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer[J]. Physical Review A, 61, 012302(1999).

    [17] Peng Y G. Optimal pulse sequence of quantum controlled not-gates via nuclear magnetic resonance realization[J]. Laser & Optoelectronics Progress, 58, 0127002(2021).

    [18] Peng Y G. Research on the program problem of the NMR pulse sequence design in quantum algorithm[J]. College Physics, 40, 38-47(2021).

    [19] Peng Y G. Design and verification of quantum controlled-not gate NMR pulse sequence[J]. Computer Engineering and Applications, 57, 97-102(2021).

    [20] Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantum searching[J]. Physical Review Letters, 80, 3408-3411(1998).

    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002
    Download Citation