• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0727002 (2023)
Yonggang Peng*
Author Affiliations
  • Department of Applied Physics, College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
  • show less
    DOI: 10.3788/LOP220821 Cite this Article Set citation alerts
    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002 Copy Citation Text show less
    Quantum network for Toffoli gates using controlled NOT and phase shift gates
    Fig. 1. Quantum network for Toffoli gates using controlled NOT and phase shift gates
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 000
    Fig. 2. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 000
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 001
    Fig. 3. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 001
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 010
    Fig. 4. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 010
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 011
    Fig. 5. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 011
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 100
    Fig. 6. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 100
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 101
    Fig. 7. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 101
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 110
    Fig. 8. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 110
    Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 111
    Fig. 9. Evolution of Q1, Q2, and Q3 with execution time when initial quantum state is 111
    Y3U23Y¯3Y2I12Y¯2U¯23U13
    J12z0-0.43×10-600-0.43×10-60-0.43×10-6-0.43×10-6
    J23z0-0.43×10-600-0.43×10-60-0.43×10-6-0.43×10-6
    J13z0-0.43×10-600-0.43×10-60-0.43×10-6-0.43×10-6
    h˜1y0.250-0.250.250-0.2500
    h˜2y0.250-0.250.250-0.2500
    h˜3y0.250-0.250.250-0.2500
    h1z111111-11
    h2z111111-11
    h3z111111-11
    f1x10110100
    f2x10110100
    f3x10110100
    Table 1. Toffoli gate NMR pulse sequence parameter values
    Y¯3U23Y¯3Y2I12U¯23Y¯2U¯13
    τ /s1.58×10-77.3×10-31.58×10-71.58×10-71.46×10-27.3×10-31.58×10-77.3×10-3
    δ /s1.58×10-77.3×10-31.58×10-71.58×10-71.46×10-27.3×10-31.58×10-77.3×10-3
    m11111111
    Table 2. Execution time, time step, and number of time step of unitary transformation
    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002
    Download Citation