• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0727002 (2023)
Yonggang Peng*
Author Affiliations
  • Department of Applied Physics, College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
  • show less
    DOI: 10.3788/LOP220821 Cite this Article Set citation alerts
    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002 Copy Citation Text show less

    Abstract

    The three-qubit Toffoli gate is equivalent to the combination of two two-qubit controlled NOT gates and three two-qubit controlled phase-shift gates. The controlled NOT and phase-shift gates respectively comprise a combination of nuclear-magnetic-resonance pulse sequences and a free development operator of two nuclear spins with time. According to the order in which the controlled NOT and phase-shift gates act on the nuclear spin system, the nuclear-magnetic-resonance-based physical realization of a quantum Toffoli gate is achieved. The time-dependent Schr?dinger equation is numerically solved by the Suzuki formula to confirm the correctness and feasibility of the realization of the quantum Toffoli gate based on nuclear magnetic resonance.
    H=-J123zS1zS2zS3z-J12zS1zS2z-J13zS1zS3z-J23zS2zS3z-h1zS1z-h2zS2z-h3zS3z-j=13α=x,yh˜jαsin(2πfjαt+φjα)
    0==101==01
    X=eiπSjx/2=121ii1Y=eiπSjy/2=1211-11
    X¯=e-iπSjx/2=121-i-i1Y¯=e-iπSjy/2=121-111
    itψ(t)=-[hjzSjz+h˜jxsin(ωt)]ψ(t)
    τ=πh˜jx
    V=e-iπ/421ii1
    V23=1000010000e-iπ/4/2ie-iπ/4/200ie-iπ/4/2e-iπ/4/2=Y¯3100001000010000e-iπ/2Y3=e-iαY¯3U23Y3
    Y3=12110001000010000e-iπ/2
    U23=e-iτH23=eiϕ000000eiϕ010000eiϕ100000eiϕ11=eiα100001000010000e-iπ
    H23=-J23zS2zS3z-h(S2z+S3z)h2z=h3z=h
    ϕ00=ϕ01=ϕ10=αϕ11=α-π2
    τ(J234+h)=-τJ234=ατ(J234-h)=α-π2
    h=-J232τJ23=-π2
    CNOT=I1002S2z=I1002Y¯2S2zY2=Y¯2100001000010000-1Y2=e-iβY¯2I12Y2
    I12=e-iτH12=eiφ000000eiφ010000eiφ100000eiφ11=eiβ100001000010000-1
    H12=-J12zS1zS2z-h(S1z+S2z)h1z=h2z=h
    φ00=φ01=φ10=βφ11=β-π
    τ(J124+h)=-τJ124=βτ(J124-h)=β-π
    h=-J122τJ12=-π
    Y¯3U13Y3Y¯2I12Y2Y¯3U¯23Y3Y¯2I12Y2Y¯3U23Y3
    2πh1z=2πh2z=2πh3z=500 MHz(1)
    J12z=J13z=J23z=-215 Hz(1)
    2πh˜1y=2πh˜2y=2πh˜3y=125 MHz(1)
    2πf1x=2πf2x=2πf3x=500 MHz
    h˜1y=h˜2y=h˜3y=0.25 MHzh1z=h2z=h3z=1 MHz(1)
    f1x=f2x=f3x=1 MHzJ12z=J13z=J23z=-0.43×10-6MHz
    itΦ(t)=H(t)Φ(t)
    Qj=Qjz=12-Φ(t)IjzΦ(t)
    U(t+τ)=exp+ (-itt+τHudu)
    Ut+τ,t=Ut+mδ,t+m-1δ,,U(t+δ,t)
    U(δ)=e-iδHx/2e-iδHy/2e-iδHxe-iδHy/2e-iδHz/2
    U[t+(m+1),t+mδ]=e-iδHz[t+(m+1/2)δ]/2e-iδHy[t+(m+1/2)δ]/2e-iδHx[t+(m+1/2)δ]e-iδHy[t+(m+1/2)δ]/2e-iδHz[t+(m+1/2)δ]/2
    Yonggang Peng. Nuclear-Magnetic-Resonance-Based Physical Realization of Quantum Toffoli Gate[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727002
    Download Citation