• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1029001 (2022)
Bingxin Tian*, Jun Han, and Bingcai Liu
Author Affiliations
  • School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1029001 Cite this Article Set citation alerts
    Bingxin Tian, Jun Han, Bingcai Liu. Research on Non-Invasive Deep Focusing in Random Scattering Medium[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1029001 Copy Citation Text show less
    References

    [1] Hofer M, Soeller C, Brasselet S et al. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations[J]. Optics Express, 26, 9866-9881(2018).

    [2] Li X J, Tang W S, Yi W J et al. Review of optical scattering imaging technology with wide field of view and long distance[J]. Chinese Journal of Lasers, 48, 0401012(2021).

    [3] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [4] Si K, Tang L M, Du J C et al. Light focusing through scattering medium based on binary transmission matrix[J]. Chinese Journal of Lasers, 47, 0207038(2020).

    [5] Wang X, Liu H L, Hu C Y et al. Transmissive imaging through scattering media based on multi-wavelength illumination[J]. Acta Optica Sinica, 40, 1611002(2020).

    [6] Gong C M. Research on focusing and image recovery algorithm for random scattering optical system[D](2017).

    [7] Geng R R. Research on focusing of scattering media based on wavefront feedback shaping technology[D](2018).

    [8] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [9] Mosk A P, Lagendijk A, Lerosey G et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).

    [10] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 6, 549-553(2012).

    [11] Katz O, Small E, Guan Y F et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 1, 170-174(2014).

    [12] Daniel A, Oron D, Silberberg Y. Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging[J]. Optics Express, 27, 21778-21786(2019).

    [13] Ghielmetti G, Aegerter C M. Direct imaging of fluorescent structures behind turbid layers[J]. Optics Express, 22, 1981-1989(2014).

    [14] Hofer M, Soeller C, Brasselet S et al. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations[J]. Optics Express, 26, 9866-9881(2018).

    [15] Boniface A, Blochet B, Dong J et al. Noninvasive light focusing in scattering media using speckle variance optimization[J]. Optica, 6, 1381-1385(2019).

    [16] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 66, 1145-1150(1976).

    [17] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010).

    [18] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [19] Moretti C, Gigan S. Readout of fluorescence functional signals through highly scattering tissue[J]. Nature Photonics, 14, 361-364(2020).

    Bingxin Tian, Jun Han, Bingcai Liu. Research on Non-Invasive Deep Focusing in Random Scattering Medium[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1029001
    Download Citation