• Laser & Optoelectronics Progress
  • Vol. 56, Issue 15, 153001 (2019)
Ran An1, Quanhong Ou1, Gang Liu1、*, Weimei Yang1, Zhiqiu Fu1, Jianmei Li1, and Youming Shi2
Author Affiliations
  • 1 School of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan 650500, China
  • 2 College of Physics and Electronic Engineering, Qujing Normal University, Qujing, Yunnan 650011, China
  • show less
    DOI: 10.3788/LOP56.153001 Cite this Article Set citation alerts
    Ran An, Quanhong Ou, Gang Liu, Weimei Yang, Zhiqiu Fu, Jianmei Li, Youming Shi. Surface-Enhanced Raman Spectroscopy of Mushroom Spores[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153001 Copy Citation Text show less
    References

    [1] Hügler M, BOckle K, Eberhagen I et al. Detection and quantification of E. coli and coliform bacteria in water samples with a new method based on fluorescence in situ hybridisation[M]. ∥Kay D, Fricker C. The significance of faecal indicators in water: a global perspective. Cambridge: Royal Society of Chemistry, 123-130(2012).

    [2] Kenzaka T, Yamaguchi N, Utrarachkij F et al. Rapid identification and enumeration of antibiotic resistant bacteria in urban canals by microcolony-fluorescence in situ hybridization[J]. Journal of Health Science, 52, 703-710(2006).

    [3] Puppels G J, Otto C et al. . Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 347, 301-303(1990).

    [4] Williams A C. Edwards H G M. Fourier transform Raman spectroscopy of bacterial cell walls[J]. Journal of Raman Spectroscopy, 25, 673-677(1994).

    [5] Chadha S, Manoharan R, Moenne-Loccoz P et al. Comparison of the UV resonance Raman spectra of bacteria, bacterial cell walls, and ribosomes excited in the deep UV[J]. Applied Spectroscopy, 47, 38-43(1993).

    [6] Ngundi M M, Qadri S A, Wallace E V et al. Detection of deoxynivalenol in foods and indoor air using an array biosensor[J]. Environmental Science & Technology, 40, 2352-2356(2006).

    [7] Zajac A, Hanuza J, Dyminska L. Raman spectroscopy in determination of horse meat content in the mixture with other meats[J]. Food Chemistry, 156, 333-338(2014).

    [8] Haughey S A, Galvin-King P, Ho Y C et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye[J]. Food Control, 48, 75-83(2015).

    [9] Ozbalci B, Boyaci I H, Topcu A et al. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks[J]. Food Chemistry, 136, 1444-1452(2013).

    [10] Nakashima S, Ogura T, Kitagawa T. Infrared and Raman spectroscopic investigation of the reaction mechanism of cytochrome c oxidase[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847, 86-97(2015).

    [11] Orelio C C. Beiboer S H W, Morsink M C, et al. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification[J]. Journal of Microbiological Methods, 107, 126-132(2014).

    [12] Gao Q, Liu Y, Li H et al. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra[J]. Journal of Pharmaceutical and Biomedical Analysis, 94, 58-64(2014).

    [13] Boiret M, Rutledge D N, Gorretta N et al. Application of independent component analysis on Raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents[J]. Journal of Pharmaceutical and Biomedical Analysis, 90, 78-84(2014).

    [14] Li S X, Zhang Y J, Xu J F et al. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine[J]. Applied Physics Letters, 105, 091104(2014).

    [15] Guo J, Rong Z, Xiao R et al. Application of surface-enhanced Raman spectroscopy in human serum[J]. Military Medical Sciences, 40, 350-352(2016).

    [16] Guedes A, Ribeiro H, Fernandez-Gonzalez M et al. Pollen Raman spectra database: application to the identification of airborne pollen[J]. Talanta, 119, 473-478(2014).

    [17] Jia X X, Li J, Qin T et al. Current views on surface enhanced Raman spectroscopy in microbiology[J]. Chinese Journal of Biotechnology, 31, 611-620(2015).

    [18] Lin J Q, Ruan Q Y, Chen G N et al. Research progress of surface enhanced Raman spectroscopy for cancer detection[J]. Laser & Optoelectronics Progress, 50, 080020(2013).

    [19] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 86, 3391-3395(1982).

    [20] Felix-Rivera H. Hernandez-Rivera S P. Raman spectroscopy techniques for the detection of biological samples in suspensions and as aerosol particles: a review[J]. Sensing and Imaging: An International Journal, 13, 1-25(2012).

    [21] Ivleva N P, Wagner M, Horn H et al. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy[J]. Analytical and Bioanalytical Chemistry, 393, 197-206(2009).

    [22] Liu C, Yin Y. Inherent optical properties of pollen particles: a case study for the morning glory pollen[J]. Optics Express, 24, A104-A113(2016).

    [23] Yan B, Li B, Wen Z N et al. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors[J]. BMC Cancer, 15, 650(2015).

    [24] Yonzon C R, Haynes C L, Zhang X Y et al. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 76, 78-85(2004).

    [25] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 42, 493-541(2007).

    [26] Sigurdsson S, Philipsen P A, Hansen L K et al. Detection of skin cancer by classification of Raman spectra[J]. IEEE Transactions on Biomedical Engineering, 51, 1784-1793(2004).

    [27] Vandenabeele P, Wehling B, Moens L et al. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art[J]. Analytica Chimica Acta, 407, 261-274(2000).

    [28] Leroy M, Labbe J F, Ouellet M et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 10, 2703-2711(2014).

    [29] Hua X, Zhang G, Yang J W et al[J]. Theory study and application of the BP-ANN method for power grid short-term load forecasting ZTE Communications, 2015, 2-5.

    Ran An, Quanhong Ou, Gang Liu, Weimei Yang, Zhiqiu Fu, Jianmei Li, Youming Shi. Surface-Enhanced Raman Spectroscopy of Mushroom Spores[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153001
    Download Citation