• Photonics Research
  • Vol. 10, Issue 1, 21 (2022)
Dewen Cheng1, Jiaxi Duan1、2, Hailong Chen1, He Wang2, Danyang Li1, Qiwei Wang1、2, Qichao Hou1, Tong Yang1, Weihong Hou2, Donghua Wang2, Xiaoyu Chi3, Bin Jiang3, and Yongtian Wang1、*
Author Affiliations
  • 1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Ned Co., Ltd., Beijing 100081, China
  • 3Goertek Co., Ltd., Weifang 261031, China
  • show less
    DOI: 10.1364/PRJ.440018 Cite this Article Set citation alerts
    Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21 Copy Citation Text show less
    References

    [1] O. Cakmakci, J. Rolland. Head-worn displays: a review. J. Display Technol., 2, 199-216(2006).

    [2] A. J. Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, X. Chen. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev. Med. Devices, 18, 47-62(2021).

    [3] V. Elia, M. G. Gnoni, A. Lanzilotto. Evaluating the application of augmented reality devices in manufacturing from a process point of view: an AHP based model. Expert Syst. Appl., 63, 187-197(2016).

    [4] H. Hua, L. D. Brown, C. Gao. Scape: supporting stereoscopic collaboration in augmented and projective environments. IEEE Comput. Graph. Appl., 24, 66-75(2004).

    [5] H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, J. Zhang. Review and analysis of avionic helmet-mounted displays. Opt. Eng., 52, 110901(2013).

    [6] L. Jensen, F. Konradsen. A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol., 23, 1515-1529(2018).

    [7] J. Yang, W. Liu, W. Lv, D. Zhang, F. He, Z. Wei, Y. Kang. Method of achieving a wide field-of-view head-mounted display with small distortion. Opt. Lett., 38, 2035-2037(2013).

    [8] Z. Zheng, X. Liu, H. Li, L. Xu. Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface. Appl. Opt., 49, 3661-3668(2010).

    [9] L. Wei, Y. Li, J. Jing, L. Feng, J. Zhou. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express, 26, 8550-8565(2018).

    [10] A. Wilson, H. Hua. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express, 27, 15627-15637(2019).

    [11] Q. Wang, D. Cheng, Q. Hou, Y. Hu, Y. Wang. Stray light and tolerance analysis of an ultrathin waveguide display. Appl. Opt., 54, 8354-8362(2015).

    [12] Q. Wang, D. Cheng, Q. Hou, L. Gu, Y. Wang. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide. Opt. Express, 28, 35376-35394(2020).

    [13] D. Cheng, Y. Wang, C. Xu, W. Song, G. Jin. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express, 22, 20705-20719(2014).

    [14] L. Gu, D. Cheng, Q. Wang, Q. Hou, Y. Wang. Design of a two-dimensional stray-light-free geometrical waveguide head-up display. Appl. Opt., 57, 9246-9256(2018).

    [15] I. Kasai, Y. Tanijiri, T. Endo, H. Ueda. A practical see-through head mounted display using a holographic optical element. Opt. Rev., 8, 241-244(2001).

    [16] C. Pan, Z. Liu, Y. Pang, X. Zheng, H. Cai, Y. Zhang, Z. Huang. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display. Opt. Express, 26, 26646-26662(2018).

    [17] Z. Liu, Y. Pang, C. Pan, Z. Huang. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Opt. Express, 25, 30720-30731(2017).

    [18] J. Xiao, J. Liu, J. Han, Y. Wang. Design of achromatic surface microstructure for near-eye display with diffractive waveguide. Opt. Commun., 452, 411-416(2019).

    [19] T. Levola. Novel diffractive optical components for near to eye displays. SID Symp. Dig., 37, 64-67(2006).

    [20] J. Han, J. Liu, X. Yao, Y. Wang. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. Opt. Express, 23, 3534-3549(2015).

    [21] T. Yang, G. Jin, J. Zhu. Automated design of freeform imaging systems. Light Sci. Appl., 6, e17081(2017).

    [22] J. P. Rolland, M. A. Davies, T. J. Suleski, C. Evans, A. Bauer, J. C. Lambropoulos, K. Falaggis. Freeform optics for imaging. Optica, 8, 161-176(2021).

    [23] B. Zhang, G. Jin, J. Zhu. Towards automatic freeform optics design: coarse and fine search of the three-mirror solution space. Light Sci. Appl., 10, 65(2021).

    [24] F. Duerr, H. Thienpont. Freeform imaging systems: Fermat’s principle unlocks “first time right” design. Light Sci. Appl., 10, 95(2021).

    [25] D. Cheng, H. Chen, T. Yang, J. Ke, Y. Li, Y. Wang. Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics. Chin. Opt. Lett., 19, 112202(2021).

    [26] D. Cheng, Y. Wang, H. Hua, M. M. Talha. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt., 48, 2655-2668(2009).

    [27] Q. Wang, D. Cheng, Y. Wang, H. Hua, G. Jin. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements. Appl. Opt., 52, C88-C99(2013).

    [28] D. Cheng, Y. Wang, H. Hua, J. Sasian. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. Opt. Lett., 36, 2098-2100(2011).

    [29] C. Yao, D. Cheng, T. Yang, Y. Wang. Design of an optical see-through light-field near-eye display using a discrete lenslet array. Opt. Express, 26, 18292-18301(2018).

    [30] C. Yao, D. Cheng, Y. Wang. Matrix optics representation and imaging analysis of a light-field near-eye display. Opt. Express, 28, 39976-39997(2020).

    [31] L. Huang, J. Whitehead, S. Colburn, A. Majumdar. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photon. Res., 8, 1613-1623(2020).

    [32] Y. Liu, Q. Yu, Z. Chen, H. Qiu, R. Chen, S. Jiang, X. He, F. Zhao, J. Dong. Meta-objective with sub-micrometer resolution for microendoscopes. Photon. Res., 9, 106-115(2021).

    [33] H. Li, X. Xiao, B. Fang, S. Gao, Z. Wang, C. Chen, Y. Zhao, S. Zhu, T. Li. Bandpass-filter-integrated multiwavelength achromatic metalens. Photon. Res., 9, 1384-1390(2021).

    [34] M. Deng, T. Ren, J. Wang, L. Chen. Doublet achromatic metalens for broadband optical retroreflector. Chin. Opt. Lett., 19, 023601(2021).

    [35] Z. Shen, S. Zhou, X. Li, S. Ge, P. Chen, W. Hu, Y. Lu. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photon., 2, 036002(2020).

    [36] B. Xu, H. Li, S. Gao, X. Hua, C. Yang, C. Chen, F. Yan, S. Zhu, T. Li. Metalens-integrated compact imaging devices for wide-field microscopy. Adv. Photon., 2, 066004(2020).

    [37] G. Y. Lee, J. Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J. H. Jeong, B. Lee. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [38] https://xinreality.com/wiki/R-9_Smartglasses. https://xinreality.com/wiki/R-9_Smartglasses

    [39] https://www.magicleap.com/en-us/magic-leap-1. https://www.magicleap.com/en-us/magic-leap-1

    [40] https://lumusvision.com/products/dk-52-2/. https://lumusvision.com/products/dk-52-2/

    [41] https://www.olympus-global.com/en/news/2000b/nr000831fmd250e.html. https://www.olympus-global.com/en/news/2000b/nr000831fmd250e.html

    [42] https://www.emagin.com/products/application-note. https://www.emagin.com/products/application-note

    [43] https://www.rockwellcollins.com/. https://www.rockwellcollins.com/

    [44] http://www.nedplusar.com/en/index. http://www.nedplusar.com/en/index

    [45] S. J. Robbins. Three piece prism eye-piece. U.S. patent(2015).

    [46] D. Cheng, Q. Wang. Free-form prism-lens group and near-eye display apparatus. U.S. patent(2019).

    [47] D. Cheng, H. Chen, Q. Wang, Q. Hou. Optical component for near-eye display. CN patent(2021).

    [48] . CODE V, Reference Manual(2020).

    [49] D. Cheng, Y. Wang, H. Hua. Automatic image performance balancing in lens optimization. Opt. Express, 18, 11574-11588(2010).

    Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21
    Download Citation