• Photonics Research
  • Vol. 10, Issue 4, 1022 (2022)
Zhifei Yu1, Bo Fang1, Liqing Chen1、2、*, Keye Zhang1, Chun-Hua Yuan1、2、5, and Weiping Zhang2、3、4、6
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3School of Physics and Astronomy, Shanghai Jiao Tong University, and Tsung-Dao Lee Institute, Shanghai 200240, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5e-mail: chyuan@phy.ecnu.edu.cn
  • 6e-mail: wpzhang@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.453940 Cite this Article Set citation alerts
    Zhifei Yu, Bo Fang, Liqing Chen, Keye Zhang, Chun-Hua Yuan, Weiping Zhang. Memory-assisted quantum accelerometer with multi-bandwidth[J]. Photonics Research, 2022, 10(4): 1022 Copy Citation Text show less
    References

    [1] P. S. de Brito Andre, H. Varum. Accelerometers: Principles, Structure and Applications(2013).

    [2] M. Bao. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes(2000).

    [3] C.-W. Tan, S. Park. Design of accelerometer-based inertial navigation systems. IEEE Trans. Instrum. Meas., 54, 2520-2530(2005).

    [4] D. Jiang, W. Zhang, F. Li. All-metal optical fiber accelerometer with low transverse sensitivity for seismic monitoring. IEEE Sens. J., 13, 4556-4560(2013).

    [5] C. Acar, A. M. Shkel. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. J. Micromech. Microeng., 13, 634-645(2003).

    [6] Y. Dong, P. Zwahlen, A. M. Nguyen, R. Frosio, F. Rudolf. Ultra-high precision MEMS accelerometer. 16th International Solid-State Sensors, Actuators and Microsystems Conference, 695-698(2011).

    [7] S. Tadigadapa, K. Mateti. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol., 20, 092001(2009).

    [8] C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, H. K. Rockstad. Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J. Microelectromech. Syst., 7, 235-244(1998).

    [9] R. Mukherjee, J. Basu, P. Mandal, P. K. Guha. A review of micromachined thermal accelerometers. J. Micromech. Microeng., 27, 123002(2017).

    [10] U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, P. J. Clews. Inplane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuators A Phys., 145, 283-290(2008).

    [11] K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, Y. Peter. In-plane silicon-on-insulator optical MEMS accelerometer using waveguide Fabry-Perot microcavity with silicon/air Bragg mirror. IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 839-842(2010).

    [12] W. Noell. Applications of SOI-based optical MEMS. IEEE J. Sel. Top. Quantum Electron., 8, 148-154(2002).

    [13] T. A. Berkoff, A. D. Kersey. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photon. Technol. Lett., 8, 1677-1679(1996).

    [14] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [15] Y. Yang, X. Li, K. Kou, L. Zhang. Optical accelerometer design based on laser self-mixing interference. Proc. SPIE, 9369, 93690R(2015).

    [16] Y. L. Li, P. F. Barker. Characterization and testing of a micro-g whispering gallery mode optomechanical accelerometer. J. Lightwave Technol., 36, 3919-3926(2018).

    [17] N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister. Multimode optical fiber displacement sensor. Appl. Opt., 20, 167-168(1981).

    [18] S. Chen, H. Xu. Design analysis of a high-Q micromechanical capacitive accelerometer system. IEICE Electron. Express, 14, 20170410(2017).

    [19] M. D. LeHaye, O. Buu, B. Camarota, K. C. Schwab. Approaching the quantum limit of a nanomechanical resonator. Science, 304, 74-77(2004).

    [20] J. P. Dowling. Quantum optical metrology-the lowdown on high-N00N states. Contemp. Phys., 49, 125-143(2008).

    [21] P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, W. Zhang. Temporal purity and quantum interference of single photons from two independent cold atomic ensembles. Phys. Rev. Lett., 117, 013602(2016).

    [22] B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, W. Zhang. Atom-light hybrid interferometer. Phys. Rev. Lett., 115, 043602(2015).

    [23] X. Feng, Z. Yu, B. Chen, S. Chen, Y. Wu, D. Fan, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, W. Zhang. Reducing the mode-mismatch noises in atom-light interactions via optimization of the temporal waveform. Photon. Res., 8, 1697-1702(2020).

    [24] Z.-D. Chen, C.-H. Yuan, H.-M. Ma, D. Li, L. Q. Chen, Z. Y. Ou, W. Zhang. Effects of losses in the atom-light hybrid SU(1,1) interferometer. Opt. Express, 24, 17766-17778(2016).

    [25] C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 409, 490-493(2001).

    [26] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, B. C. Buchler. High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun., 2, 174(2011).

    [27] J. Guo, X. Feng, P. Yang, Z. Yu, L. Q. Chen, C.-H. Yuan, W. Zhang. High-performance Raman quantum memory with optimal control in room temperature atoms. Nat. Commun., 10, 148(2019).

    [28] Y. Ma, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, G.-C. Guo. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 12, 2381(2021).

    [29] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, M. J. Sellars. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 517, 177-180(2015).

    [30] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, M. D. Lukin. Atomic memory for correlated photon states. Science, 301, 196-200(2003).

    [31] W. Happer. Optical pumping. Rev. Mod. Phys., 44, 169-249(1972).

    [32] S. Manz, T. Fernholz, J. Schmiedmayer, J.-W. Pan. Collisional decoherence during writing and reading quantum states. Phys. Rev. A, 75, 040101(2007).

    [33] S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, S. Du. A dark-line two-dimensional magneto optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum., 83, 073102(2012).

    [34] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nat. Phys., 6, 894-899(2010).

    [35] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strasse, L. Li, N.-L. Liu, B. Zhao, J.-W. Pan. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys., 8, 517-521(2012).

    [36] O. Katz, O. Firstenberg. Light storage for one second in room-temperature alkali vapor. Nat. Commun., 9, 2074(2018).

    [37] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [38] K. Hammerer, A. S. Sorensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041(2010).

    [39] Y. Yoshikawa, Y. Torii, T. Kuga. Superradiant light scattering from thermal atomic vapors. Phys. Rev. Lett., 94, 083602(2005).

    [40] B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, J. W. Pan. A millisecond quantum memory for scalable quantum networks. Nat. Phys., 5, 95-99(2009).

    Zhifei Yu, Bo Fang, Liqing Chen, Keye Zhang, Chun-Hua Yuan, Weiping Zhang. Memory-assisted quantum accelerometer with multi-bandwidth[J]. Photonics Research, 2022, 10(4): 1022
    Download Citation