• Photonics Research
  • Vol. 10, Issue 4, 1022 (2022)
Zhifei Yu1, Bo Fang1, Liqing Chen1、2、*, Keye Zhang1, Chun-Hua Yuan1、2、5, and Weiping Zhang2、3、4、6
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3School of Physics and Astronomy, Shanghai Jiao Tong University, and Tsung-Dao Lee Institute, Shanghai 200240, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5e-mail: chyuan@phy.ecnu.edu.cn
  • 6e-mail: wpzhang@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.453940 Cite this Article Set citation alerts
    Zhifei Yu, Bo Fang, Liqing Chen, Keye Zhang, Chun-Hua Yuan, Weiping Zhang. Memory-assisted quantum accelerometer with multi-bandwidth[J]. Photonics Research, 2022, 10(4): 1022 Copy Citation Text show less

    Abstract

    The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the ng/Hz level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.
    tS^a1(2)=i(|ΩW|2Δδ+ΔkW·v)S^a1(2)iχa^1,

    View in Article

    S^a1(2)=(iηWeiθWa^1eiφ+eiθW01ηWS^a0(2))×ei(|ΩW|2Δδ+ΔkW·v)tW/2,

    View in Article

    a^2=ηei(Δφa+Δφvφ0)eΓ2tMa^1+1ηe2Γ2tMV^,

    View in Article

    a=λsΔφaπtM2.

    View in Article

    Δa=1QeΔaSNL,

    View in Article

    Qe=2G1G2G12+g12ηeΓ2tMn=14|ςn0|2,

    View in Article

    ΔaSNL=λsπ(G12N0+g12N0)tM2,

    View in Article

    H=iξa^S^a+h.c.,(A1)

    View in Article

    a^=Ga^0+gS^a0eiθP,S^a=GS^a0+ga^0eiθP.(A2)

    View in Article

    a^1=G1a^0+g1S^a0(1)eiθP1,S^a1(1)=G1S^a0(1)+g1a^0eiθP1,(A3)

    View in Article

    a^1a^1=G12a^0a^0+g12G12a^0a^0,S^a1(1)S^a1(1)=g12a^0a^0+g12(G121)a^0a^0.(A4)

    View in Article

    Var(a^1a^1S^a1(1)S^a1(1))=Var(a^0a^0)=a^0a^0,(A5)

    View in Article

    DOS=a^0a^0(2G121)a^0a^0=12G121.(A6)

    View in Article

    Var(a^1a^1)=G14Var(a^0a^0)+G12(G121)a^0a^0=G12(2G121)a^0a^0,(A7)

    View in Article

    Var(S^a1(1)S^a1(1))=(G121)2Var(a^0a^0)+G12(G121)a^0a^0=(G121)(2G121)a^0a^0.(A8)

    View in Article

    H=χa^S^a+h.c.,(B1)

    View in Article

    ta^=iχ*S^a,tS^a=iχa^,(B2)

    View in Article

    t(a^S^a)=i(0χ*χαW)(a^S^a),(B3)

    View in Article

    a^(t=0)=a^1eiφ,φ=ksL0,S^a(t=0)=S^a0(2),(B4)

    View in Article

    S^a1(2)=eiαWtW/2{[i2|χ|βWeiθWsin(βW2tW)]a^1eiφ+[iαWβWsin(βW2tW)+cos(βW2tW)]S^a0(2)},a^L=eiαWtW/2{[i2|χ|βWeiθWsin(βW2tW)]S^a0(2)+[iαWβWsin(βW2tW)+cos(βW2tW)]a^1eiφ},(B5)

    View in Article

    |i2|χ|βWeiθWsin(βW2tW)|2+|iαWβWsin(βW2tW)+cos(βW2tW)|2=1.(B6)

    View in Article

    S^a1(2)=eiαWtW/2[iηWeiθWa^1eiφ+eiθW01ηWS^a0(2)],a^L=eiαWtW/2[iηWeiθWS^a0(2)+eiθW01ηWa^1eiφ].(B7)

    View in Article

    a^2=eiαRtR/2eiks(L0+ΔL)(iηReiθRS^a2(2)+eiθR01ηRb^),(C1)

    View in Article

    a^2=eiαRtR/2eiks(L0+ΔL)(iηReiθRS^a2(2)+eiθR01ηRb^)=eiαRtR/2eiks(L0+ΔL)[iηReiθR(S^a1(2)eΓ2tMeiϕ(tM)+F^(2))+eiθR01ηRb^]=eiαRtR/2eiks(L0+ΔL){iηReiθR[eiαWtW/2(iηWa^1eiθWeiksL0+eiθ01ηWS^a0(2))eΓ2tMeiϕ(tM)+F^(2)]+eiθR01ηRb^}=ei[(αWtW+αRtR)/2+ϕ(tM)ks(2L0+ΔL)]ei(θWθR)ηWηReΓ2tMa^1+D^,(C2)

    View in Article

    [D^,D^]=1ηWηRe2Γ2tM,(C3)

    View in Article

    (αWtW+αRtR)/2+ϕ(tM)ks(2L0+ΔL)=(αW+αR)tW/2+ϕ(tM)ks(2L0+ΔL)=(|ΩW|2Δδ)tW+ΔkatM(tMtW)/2+ΔkW·vtMks(2L0+ΔL)Δφa+Δφvφ0,(C4)

    View in Article

    a^2=ηei(Δφa+Δφvφ0)eΓ2tMa^1+1ηe2Γ2tMV^.(C5)

    View in Article

    S^a2(1)=S^a1(1)eΓ1tMeiδtMeiΔkP1·vtM+F^(1),(D1)

    View in Article

    a^out=G2a^2+g2S^a2(1)eiθP2.(D2)

    View in Article

    a^out=ς1a^0+ς2S^a0(1)+ς3V^+ς4f^,(D3)

    View in Article

    Δa=λsπtM2(ΔO^)21/2|O^/φ|,(E1)

    View in Article

    |X^(Δφa)|=2exp(tM2τ2)ηeΓ2tMG1G2N0sin(θl+θαΔφa).(E2)

    View in Article

    Δ2X^=|ς1|2+|ς2|2+|ς3|2+|ς4|2,(E3)

    View in Article

    |ς1|=|eiΔφaexp(tM2τ2)eΓ2tMG1G2+eΓ1tMg1g2|,|ς2|=|G1g2eΓ1tMG2g1eiΔφaexp(tM2τ2)ηeΓ2tM|,|ς3|=G21ηe2Γ2tM,|ς4|=g21e2Γ1tM,(E4)

    View in Article

    Δa=λsπtM2Δ2X^|X^(Δφa)|=1QeΔaSNL,(E5)

    View in Article

    Qe=2G1G2G12+g12ηeΓ2tMn=14|ςn0|2,(E6)

    View in Article

    Zhifei Yu, Bo Fang, Liqing Chen, Keye Zhang, Chun-Hua Yuan, Weiping Zhang. Memory-assisted quantum accelerometer with multi-bandwidth[J]. Photonics Research, 2022, 10(4): 1022
    Download Citation