• Photonics Research
  • Vol. 12, Issue 2, 341 (2024)
Ming Hui Fang1、2、†, Yinong Xie1、†, Fangqi Xue1, Zhilin Wu1, Jun Shi2, Sheng Yu Yang2, Yilin Liu2, Zhihuang Liu2, Hsin Chi Wang2, Fajun Li1, Qing Huo Liu1、3, and Jinfeng Zhu1、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
  • 2Quanzhou San’an Integrated Circuit Co., Ltd., Quanzhou 362300, China
  • 3Eastern Institute of Technology, Ningbo 315200, China
  • show less
    DOI: 10.1364/PRJ.499795 Cite this Article Set citation alerts
    Ming Hui Fang, Yinong Xie, Fangqi Xue, Zhilin Wu, Jun Shi, Sheng Yu Yang, Yilin Liu, Zhihuang Liu, Hsin Chi Wang, Fajun Li, Qing Huo Liu, Jinfeng Zhu. Optical colorimetric LiTaO3 wafers for high-precision lithography on frequency control of SAW devices[J]. Photonics Research, 2024, 12(2): 341 Copy Citation Text show less
    References

    [1] H. Li, S. A. Tadesse, Q. Liu. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [2] C. C. W. Ruppel. Acoustic wave filter technology–a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 1390-1400(2017).

    [3] W. Geng, C. Zhao, F. Xue. Influence of structural parameters on performance of SAW resonators based on 128° YX LiNbO3 single crystal. Nanomaterials, 12, 2109(2022).

    [4] J. Streque, J. Camus, T. Laroche. Design and characterization of high-Q SAW resonators based on the AlN/sapphire structure intended for high-temperature wireless sensor applications. IEEE Sens., 20, 6985-6991(2020).

    [5] J. Wu, S. Zhang, Y. Chen. Advanced surface acoustic wave resonators on LiTaO3/SiO2/sapphire substrate. IEEE Electron Device Lett., 43, 1748-1751(2022).

    [6] L. Zhang, S. Zhang, J. Wu. High-performance acoustic wave devices on LiTaO3/SiC hetero-substrates. IEEE Trans. Microw. Theory Tech., 71, 4182-4192(2023).

    [7] S. B. Zhang, J. B. Wu, L. P. Zhang. Recent advances of radio frequency acoustic wave filters based on piezoelectric heterogeneous substrates. Navig. Control, 21, 29-39(2022).

    [8] J. Tao, Z. Tang, Y. Zou. A phase canceling technique to improve SAW duplexer isolation. Micromachines, 14, 239(2023).

    [9] M. Iwaki, M. Ueda, Y. Satoh. High-isolation SAW duplexer with on-chip SAW compensation circuit optimized for isolated multiple frequency bands. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 1927-1934(2019).

    [10] K. E. Kolodziej, B. T. Perry, J. S. Herd. In-band full-duplex technology: techniques and systems survey. IEEE Trans. Microw. Theory Tech., 67, 3025-3041(2019).

    [11] M. Kadota, Y. Ishii, S. Tanaka. A spurious-free, steep band rejection filter using a LiTaO3/quartz heteroacoustic layer surface acoustic wave resonator. Jpn. J. Appl. Phys., 59, SKKC11(2020).

    [12] S. A. Zhgoon, A. S. Shvetsov, S. A. Sakharov. High-temperature SAW resonator sensors: electrode design specifics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 657-664(2018).

    [13] S. Deshpande, S. Bhand, G. Bacher. Investigation of the effect of metallization ratio and side shift on the interdigitated electrodes performance for biochemical sensing. J. Appl. Electrochem., 51, 893-904(2021).

    [14] S. Asakawa, M. Suzuki, S. Kakio. Enhancement of leaky surface acoustic wave harmonics excitation using bonded dissimilar-material structures. Jpn. J. Appl. Phys., 60, SDDC07(2021).

    [15] Y. Zhou, Y. Li, Q. Zhang. Influence of polarization on the optimization of dual BARC structures for hyper-numerical aperture ArF immersion lithography. Proc. SPIE, 6724, 67240Y(2007).

    [16] L. Bourkea, R. J. Blaikie. Evanescent-coupled antireflection coatings for hyper-numerical aperture immersion lithography. J. Vac. Sci. Technol. B, 32, 06FE03(2014).

    [17] T. Yan, F. Zheng, Y. Yu. Formation mechanism of black LiTaO3 single crystals through chemical reduction. J. Appl. Crystallogr., 44, 158-162(2011).

    [18] T. Yan, H. Liu, J. Y. Wang. Influence of chemical reduction on optical and electrical properties of LiTaO3 crystal. J. Alloys Compd., 497, 412-415(2010).

    [19] N. Sidorov, M. Palatnikov, A. Pyatyshev. Raman scattering in a double-doped single crystal LiTaO3:Cr(0.2):Nd(0.45 wt%). Photonics, 9, 712(2022).

    [20] I. S. Steinberg, V. V. Atuchin. Two-photon holographic recording in LiTaO3:Fe crystals with high intensity nanosecond pulses at 532 nm. Mater. Chem. Phys., 253, 122956(2020).

    [21] (2016). https://webstore.iec.ch/publication/26105

    [22] C. C. W. Ruppel, L. Reindl, R. Weigel. SAW devices and their wireless communications applications. IEEE Microwave Mag., 3, 65-71(2002).

    [23] M. Lozano, Z. Chen, O. Williams. Giant reflection coefficient on Sc0.26Al0.74N polycrystalline diamond surface acoustic wave resonators. Phys. Status Solidi A, 216, 1900360(2019).

    [24] S. Tseng, R. Wu. Synthesis of Chebyshev/elliptic filters using minimum acoustic wave resonators. IEEE Access, 7, 103456(2019).

    [25] R. Lu, M. H. Li, Y. Yang. Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators. J. Microelectromech. Syst., 28, 209-217(2019).

    [26] L. Cai, A. Mahmoud, M. Khan. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res., 7, 1003-1013(2019).

    [27] S. Yang, M. Fang, L. Lu. Lithium tantalate wafer and blacking method therefor. Patent WO(2021).

    [28] M. Katzman, D. Munk, M. Priel. Surface acoustic microwave photonic filters in standard silicon-on-insulator. Optica, 8, 697-707(2021).

    [29] M. Katzman, M. Priel, I. Shafir. Surface acoustic wave photonic filters with a single narrow radio-frequency passband in standard silicon on insulator. Photonics Res., 10, 1723-1730(2022).

    [30] K. Barman, S. C. Ma, J. J. Huang. Modulation of plasmonic relaxation damping by surface phonons. Photonics Res., 10, 1408-1416(2022).

    [31] B. Pottier, L. Bellon. Thermo-optical bistability in silicon micro-cantilevers. SciPost Phys., 10, 120(2021).

    [32] S. Wu, Z. Wu, H. Qian. High-performance SH-SAW resonator using optimized 30˚ YX-LiNbO3/SiO2/Si. Appl. Phys. Lett., 120, 242201(2022).

    [33] Y. Zhang, J. Zhou, Y. Xie. Dual-mode hybrid quasi-SAW/BAW resonators with high effective coupling coefficient. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 1916-1921(2020).

    [34] Y. Yao, M. Zhuang, J. Chen. Design of 3D SAW filters based on the spectral element method. IEEE Access, 11, 31228-31237(2023).

    [35] K. Masato, S. Ietaka, S. Takeharu. Single crystal for piezoelectric substrate, elastic surface wave filter using it, and manufacturing method thereof. Patent(2008).

    [36] J. Kushibiki, Y. Ohashi. Determination of the true congruent composition for LiTaO3 Single crystals using the LFB ultrasonic material characterization system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 385-392(2006).

    [37] L. Bourke, R. Blaikie. Evanescent-coupled antireflection coatings for hyper-numerical aperture immersion lithography. J. Vac. Sci. Technol. B, 32, 06FE03(2014).

    [38] Y. Li, Y. Zhou. Optimization of resolution-enhancement technology and dual-layer bottom antireflective coatings in hypernumerical aperture lithography. J. Vac. Sci. Technol. B, 26, 534-540(2008).

    Ming Hui Fang, Yinong Xie, Fangqi Xue, Zhilin Wu, Jun Shi, Sheng Yu Yang, Yilin Liu, Zhihuang Liu, Hsin Chi Wang, Fajun Li, Qing Huo Liu, Jinfeng Zhu. Optical colorimetric LiTaO3 wafers for high-precision lithography on frequency control of SAW devices[J]. Photonics Research, 2024, 12(2): 341
    Download Citation