• Journal of Semiconductors
  • Vol. 43, Issue 11, 112801 (2022)
Zhaojun Suo1、2, Linwang Wang1、*, Shushen Li1、2, and Junwei Luo1、2、**
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/11/112801 Cite this Article
    Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. Clarifying the atomic origin of electron killers inβ-Ga2O3 from the first-principles study of electron capture rates[J]. Journal of Semiconductors, 2022, 43(11): 112801 Copy Citation Text show less
    References

    [1] S J Pearton, J C Yang, P H IV Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [2] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [3] Y X Gu, L Shi, J W Luo et al. Directly confirming theZ1/2 center as the electron trap in SiC through accessing the nonradiative recombination. Phys Status Solidi R, 16, 2100458(2022).

    [4] K Irmscher, Z Galazka, M Pietsch et al. Electrical properties ofβ-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 110, 063720(2011).

    [5] E Farzana, M F Chaiken, T E Blue et al. Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3. APL Mater, 7, 022502(2019).

    [6] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 123, 115702(2018).

    [7] M E Ingebrigtsen, A Y Kuznetsov, B G Svensson et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 7, 022510(2019).

    [8] M E Ingebrigtsen, J B Varley, A Y Kuznetsov et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 112, 042104(2018).

    [9] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage. Appl Phys Lett, 112, 032107(2018).

    [10] C Zimmermann, Y K Frodason, A W Barnard et al. Ti- and Fe-related charge transition levels in β-Ga2O3. Appl Phys Lett, 116, 072101(2020).

    [11] C Zimmermann, Frodason Y Kalmann, V Rønning et al. Combining steady-state photo-capacitance spectra with first-principles calculations: The case of Fe and Ti in β-Ga2O3. New J Phys, 22, 063033(2020).

    [12] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 113, 092102(2018).

    [13] C Zimmermann, V Rønning, Frodason Y Kalmann et al. Primary intrinsic defects and their charge transition levels in β-Ga2O3. Phys Rev Mater, 4, 074605(2020).

    [14] M H Lee, R L Peterson. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater, 7, 022524(2019).

    [15] Z Zhang, E Farzana, A R Arehart et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 108, 052105(2016).

    [16] W L Jia, J Y Fu, Z Y Cao et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J Comput Phys, 251, 102(2013).

    [17] W L Jia, Z Y Cao, L Wang et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Comput Phys Commun, 184, 9(2013).

    [18] D R Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B, 88, 085117(2013).

    [19] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [20] S Bhandari, M E Zvanut, J B Varley. Optical absorption of Fe in doped Ga2O3. J Appl Phys, 126, 165703(2019).

    [21] Y K Frodason, C Zimmermann, E F Verhoeven et al. Multistability of isolated and hydrogenated Ga-O divacancies in β-Ga2O3. Phys Rev Materials, 5, 025402(2021).

    [22] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 97, 142106(2010).

    [23] T Zacherle, P C Schmidt, M Martin. Ab initiocalculations on the defect structure of β-Ga2O3. Phys Rev B, 87, 235206(2013).

    [24] J Åhman, G Svensson, J Albertsson. A reinvestigation of β-gallium oxide. Acta Crystallogr C, 52, 1336(1996).

    [25] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [26] Thermochemical Data of Pure Substances. Part I + II. Von I. Barin. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York 1989. Part I: I-1 – I 87, S. 1–816; Part II: VI, S. 817–1739; Geb. DM 680.00. — ISBN 3-527-27812-5/0-89573-866-X - Maier=1990-Angewandte Chemie-Wiley Online Library,https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.19901020738

    [27] C Freysoldt, B Grabowski, T Hickel et al. First-principles calculations for point defects in solids. Rev Mod Phys, 86, 253(2014).

    [28] S H Wei. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 30, 337(2004).

    [29] Z J Suo, J W Luo, S S Li et al. Image charge interaction correction in charged-defect calculations. Phys Rev B, 102, 174110(2020).

    [30] Y Xiao, Z W Wang, L Shi et al. Anharmonic multi-phonon nonradiative transition: Anab initio calculation approach. Sci China Phys Mech Astron, 63, 277312(2020).

    [31] L Shi, L W Wang. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys Rev Lett, 109, 245501(2012).

    [32] L Shi, K Xu, L W Wang. Comparative study ofab initiononradiative recombination rate calculations under different formalisms. Phys Rev B, 91, 205315(2015).

    [33] L W Wang. Some recent advances inab initio calculations of nonradiative decay rates of point defects in semiconductors. J Semicond, 40, 091101(2019).

    [34] K Huang. On the applicability of adiabatic approximation in multiphonon recombination theory. J Semicond, 40, 090102(2019).

    [35] Y Zhang. Applications of Huang-Rhys theory in semiconductor optical spectroscopy. J Semicond, 40, 091102(2019).

    [36] K Huang, A Rhys. Theory of light absorption and non-radiative transitions inF-centres. Proc R Soc Lond A, 204, 406(1950).

    [37] K Yamaguchi. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 131, 739(2004).

    [38] M A Mastro, A Kuramata, J Calkins et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol, 6, P356(2017).

    [39] A Alkauskas, Q M Yan, C G van de Walle. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B, 90, 075202(2014).

    [40] L H Ahrens. The use of ionization potentials Part 1. Ionic radii of the elements. Geochim Cosmochim Acta, 2, 155(1952).

    [41] J Y Zhang, J L Shi, D C Qi et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 8, 020906(2020).

    [42] S Lany. Defect phase diagram for doping of Ga2O3. APL Mater, 6, 046103(2018).

    Zhaojun Suo, Linwang Wang, Shushen Li, Junwei Luo. Clarifying the atomic origin of electron killers inβ-Ga2O3 from the first-principles study of electron capture rates[J]. Journal of Semiconductors, 2022, 43(11): 112801
    Download Citation