• Advanced Photonics
  • Vol. 4, Issue 4, 044001 (2022)
Pengfei Xu1 and Zhiping Zhou1、2、*
Author Affiliations
  • 1Peking University, State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Beijing, China
  • 2Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.4.044001 Cite this Article Set citation alerts
    Pengfei Xu, Zhiping Zhou. Silicon-based optoelectronics for general-purpose matrix computation: a review[J]. Advanced Photonics, 2022, 4(4): 044001 Copy Citation Text show less
    References

    [1] Z. Zhou. Silicon Based Optoelectronics(2021).

    [2] A. Liu et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427, 615-618(2004).

    [3] E. Mounier, J. Malinge. Silicon photonics report—Yole Développement.

    [4] Z. Zhou et al. Development trends in silicon photonics for data centers. Opt. Fiber Tech., 44, 13-23(2018).

    [5] D. Thomson et al. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [6] Z. Zhou et al. Silicon photonics for advanced optical interconnections. J. Lightwave Technol., 33, 928-933(2015).

    [7] IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force 2017.

    [8] C. P. Hsu et al. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quant., 27, 1-16(2021).

    [9] J. K. Doylend, S. Gupta. An overview of silicon photonics for LIDAR. Proc. SPIE, 11285, 112850J(2020).

    [10] E. Luan et al. Silicon photonic biosensors using label-free detection. Sensors, 19, 1161(2019).

    [11] S. Srinivasan et al. Design of integrated hybrid silicon waveguide optical gyroscope. Opt. Express, 22, 24988-24993(2014).

    [12] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Adv. Neural Info. Proc. Syst., 25, 1097-1105(2012).

    [13] K. Simonyan, A. Zisserman. Very deep convolutional networks for large scale image recognition(2015).

    [14] K. He et al. Deep residual learning for image recognition(2016).

    [15] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Comput., 9, 1735-1780(1997).

    [16] K. Rupp. 42 years of microprocessor trend data(2018).

    [17] V. Sze et al. Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE, 105, 2295-2329(2017).

    [18] K. I. Kitayama et al. Novel frontier of photonics for data processing-photonic accelerator. APL Photonics, 4, 090901(2019).

    [19] M. A. Nahmias et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 1-18(2020).

    [20] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [21] N. P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit. Proc. Int. Symp. Comput. Archit. (ISCA), 1-12(2017).

    [22] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. AFIPS Conf. Proc., 483-485(1967).

    [23] M. D. Godfrey. Introduction to ‘The first draft report on the EDVAC’ by John von Neumann. Ann. Hist. Comput., 15, 11-21(1993).

    [24] H. J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat. Photon., 4, 261-263(2010).

    [25] K. E. Hamilton et al. Accelerating scientific computing in the post-Moore’s era. ACM Trans. Parallel Comput., 7, 6(2020).

    [26] Z. Zhou et al. Lowering the energy consumption in silicon photonic devices and systems [Invited]. Photonics Res., 3, B28-B46(2015).

    [27] N. G. Karthikeyan et al. Mobile Artificial Intelligence Projects(2019).

    [28] H. Zhou et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light: Sci. Appl., 11, 30(2022).

    [29] J. L. O’Brien et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 426, 264-267(2003).

    [30] A. Politi et al. Silica-on-silicon waveguide quantum circuits. Science, 320, 646-649(2008).

    [31] N. C. Harris et al. Large scale quantum photonic circuits in silicon. Nanophotonics, 5, 456-468(2016).

    [32] X. Qiang et al. Large scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics, 12, 534-539(2018).

    [33] J. Wang et al. Multidimensional quantum entanglement with large scale integrated optics. Science, 360, 285-291(2018).

    [34] Q. Cheng et al. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [35] D. Perez et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev., 11, 1700219(2017).

    [36] L. Zhuang et al. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [37] C. Ramey. Silicon photonics for artificial intelligence acceleration. IEEE Hot Chips 32 Symp., 1-26(2020).

    [38] N. C. Harris et al. Accelerating artificial intelligence with silicon photonics, 1-4(2020).

    [39] M. Y.-S. Fang et al. Design of optical neural networks with component imprecisions. Opt. Express, 27, 14009-14029(2019).

    [40] S. Pai et al. Matrix optimization on universal unitary photonic devices. Phys. Rev. Appl., 11, 064044(2019).

    [41] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [42] J. L. O’Brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [43] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [44] N. C. Harris et al. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [45] J. Carolan et al. Universal linear optics. Science, 349, 711-716(2015).

    [46] D. Pérez et al. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 636(2017).

    [47] D. A. B. Miller. Self-configuring universal linear optical component [Invited]. Photonics Res., 1, 1-15(2013).

    [48] A. Ribeiro et al. Demonstration of a 4 × 4-port self-configuring universal linear optical component. Prog. Electromagnetics Res. Symp., 3372-3375(2016).

    [49] H. Zhou et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics, 7, 792-799(2020).

    [50] H. L. Zhou et al. All-in-one silicon photonic polarization processor. Nanophotonics, 8, 2257-2267(2019).

    [51] N. J. G. Fonseca. Discussion on reciprocity, unitary matrix, and lossless multiple beam forming networks. Int. J. Antenn. Propag., 2015, 946289(2015).

    [52] M. Reck et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [53] W. R. Clements et al. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [54] L. Yang et al. On-chip CMOS-compatible optical signal processor. Opt. Express, 20, 13560-13565(2012).

    [55] L. de Marinis et al. Photonic neural networks: a survey. IEEE Access, 7, 175827-175841(2019).

    [56] S. Abel et al. Silicon photonics integration technologies for future computing systems. 24th Optoelectron. Comm. Conf. and Int. Conf. Photonics Switch. Comput., 1-3(2019).

    [57] M. Miscuglio, V. J. Sorger. Photonic tensor cores for machine learning. Appl. Phys. Rev., 7, 031404(2020).

    [58] J. Feldmann et al. Parallel convolution processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [59] J. Zhou. Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler. IEEE Photon. Technol. Lett., 23, 302-304(2011).

    [60] J. R. Ong et al. Photonic convolutional neural networks using integrated diffractive optics. IEEE J. Sel. Top. Quantum Electron., 26, 1-8(2020).

    [61] S. S. Kou et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light: Sci. Appl., 5, e16034(2016).

    [62] M. Ahmed et al. Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks. Nanophotonics, 9, 4097-4108(2020).

    [63] R. Hamerly et al. Large scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).

    [64] S. Xu et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express, 27, 19778-19787(2020).

    [65] V. Bangari et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron., 26, 1-13(2020).

    [66] Y. Huang et al. Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay. Opt. Express, 27, 20456-20467(2019).

    [67] X. Xu et al. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev., 14, 2000070(2020).

    [68] Y. Zang et al. Electro-optical neural networks based on time-stretch method. IEEE J. Sel. Top. Quantum Electron., 26, 1-10(2020).

    [69] H. Babashah et al. Temporal analog optical computing using an on-chip fully reconfigurable photonic signal processor. Opt. Laser Technol., 111, 66-74(2019).

    [70] D. Patterson et al. A case for intelligent RAM. IEEE Micro, 17, 34-44(1997).

    [71] M. Forsythe. Matrix processing with nanophotonics(2019).

    [72] Y. Arakawa et al. Silicon photonics for next generation system integration platform. IEEE Commun. Mag., 51, 72-77(2013).

    [73] A. Tsakyridis et al. 10 Gb/s optical random access memory (RAM) cell. Opt. Lett., 44, 1821-1824(2019).

    [74] K. Keeton. Memory-driven computing(2017).

    [75] NVlink(2020).

    [76] G. Keeler. Photonics in the package for extreme scalability (PIPES)(2020).

    [77] D. A. B. Miller. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE, 88, 728-749(2000).

    [78] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [79] C. Sun et al. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [80] A. H. Atabaki et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [81] P. Ambs. Optical computing: a 60-year adventure. Adv. Opt. Technol., 2010, 372652(2010).

    [82] Enlight256(2003).

    [83] J. Chang et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [84] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [85] H. T. Peng et al. Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 1-15(2018).

    [86] B. Bai et al. Towards silicon photonic neural networks for artificial intelligence. Sci. China Inform. Sci., 63, 160403(2020).

    [87] N. Jouppi et al. Motivation for and evaluation of the first tensor processing unit. IEEE Micro, 38, 10-19(2018).

    [88] A. R. Totović et al. Femtojoule per MAC neuromorphic photonics: an energy and technology roadmap. IEEE J. Sel. Top. Quantum Electron., 26, 1-15(2020).

    [89] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [90] Z. Zhou et al. Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating. IEEE J. Sel. Top. Quantum Electron., 25, 1-13(2019).

    [91] P. Sun et al. Silicon-based optoelectronics enhanced by hybrid plasmon polaritons: bridging dielectric photonics and nanoplasmonics. Photonics, 8, 482(2021).

    [92] T. Inagaki et al. A coherent Ising machine for 2000-node optimization problems. Science, 354, 603-606(2016).

    [93] D. Pierangeli, G. Marcucci, C. Conti. Large scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett., 122, 213902(2019).

    [94] C. Roques-Carmes et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun., 11, 249(2020).

    [95] S. Foucart, H. Rauhut. A Mathematical Introduction to Compressive Sensing(2013).

    [96] S. Lin et al. FFT-based deep learning deployment in embedded systems. Proc. Des. Autom. Test Eur. Conf. Exhib., 1045-1050(2018).

    [97] A. J. Macfaden et al. An optical Fourier transform coprocessor with direct phase determination. Sci. Rep., 7, 13667(2017).

    Pengfei Xu, Zhiping Zhou. Silicon-based optoelectronics for general-purpose matrix computation: a review[J]. Advanced Photonics, 2022, 4(4): 044001
    Download Citation