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Abstract. Conventional electronic processors, which are the mainstream and almost invincible hardware
for computation, are approaching their limits in both computational power and energy efficiency, especially in
large-scale matrix computation. By combining electronic, photonic, and optoelectronic devices and circuits
together, silicon-based optoelectronic matrix computation has been demonstrating great capabilities and
feasibilities. Matrix computation is one of the few general-purpose computations that have the potential to
exceed the computation performance of digital logic circuits in energy efficiency, computational power, and
latency. Moreover, electronic processors also suffer from the tremendous energy consumption of the digital
transceiver circuits during high-capacity data interconnections. We review the recent progress in photonic
matrix computation, including matrix-vector multiplication, convolution, and multiply–accumulate operations in
artificial neural networks, quantum information processing, combinatorial optimization, and compressed
sensing, with particular attention paid to energy consumption. We also summarize the advantages of silicon-
based optoelectronic matrix computation in data interconnections and photonic-electronic integration over
conventional optical computing processors. Looking toward the future of silicon-based optoelectronic matrix
computations, we believe that silicon-based optoelectronics is a promising and comprehensive platform for
disruptively improving general-purpose matrix computation performance in the post-Moore’s law era.
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1 Introduction
Silicon-based optoelectronics is a rapidly developing technol-
ogy that aims to heterogeneously integrate photonic, optoelec-
tronic, and electronic devices and circuits on a silicon substrate
(photonic-electronic integration) to form a large-scale compre-
hensive on-chip system.1 Since the modulation bandwidth of
silicon optical modulators exceeded 1 GHz in 2004,2 the data
bitrate of transmission has been continuously increasing. Due to
advantages in manufacturing cost and mass production, silicon-
based optoelectronics are becoming one of the mainstream sol-
utions in both high-speed telecommunications and data center
interconnections.3–6 IEEE P802.3bs 400GbE7 (or even 800 GbE,
1.6 TbE) high-speed optical transceivers have attracted a wide
range of interest from the optical communications industry.

Novel silicon-based optoelectronic technologies also expedite
the development of lidars,8,9 photonic sensors,10 optical gyro-
scopes,11 optical computing processors (or coprocessors), and
more.

In past decades, artificial neural network (ANN) became a
popular model for image classification, pattern recognition,
and prediction in many disciplines. Unlike neuromorphic com-
puting (build neural dynamics models, mimic natural neural net-
works, train the plasticity of synapses, and aim at lower energy
consumption brain-like artificial intelligence), ANN adopts an
aggressive accuracy-driven strategy in its software research and
development. Innovative ANN models, like the convolution
(CONV) neural network (ALEXNET,12 VGG,13 RESNET,14 etc.)
and the recurrent neural network (long short-term memory15),
are proposed to achieve more accurate results. Although ANN
models made revolutionary progress in artificial intelligence, the
overall floating-point operations (FLOPs) of ANN models have*Address all correspondence to Zhiping Zhou, zjzhou@pku.edu.cn
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been increasing exponentially. The parameters of these high-
accuracy models are generally more than billions (or even tril-
lions) of model parameters. The ANN model training process
also requires a lot of matrix computations, which usually take
several weeks in cloud data centers with large amounts of data,
thereby increasing the software development life cycle. Notably,
due to the slowdown of complementary metal–oxide–semicon-
ductor (CMOS) technology scaling, Moore’s law no longer
seems to apply, and the switching energy of a single transistor
deviates from the law’s expectations16 [in Fig. 1(a)]. It is becom-
ing increasingly difficult to reduce the minimum feature size of
transistors and improve the single-core performance, which is
limited by clock speed and energy efficiency of digital logic cir-
cuits, whereas the accuracy-driven ANN models demand higher
requirements of the computation performance of the processors.
Figure 1(b) shows the model accuracy versus normalized energy
consumption of typical ANN models. To further increase the
model accuracy in classification, model training and execution
often tend to consume exponentially more electricity.17

In recent decades [in Fig. 1(c)], multicore parallel processing
electronic processors,18 including temporal architectures [e.g.,
graphics processing unit (GPU) based on the single-instruction

multiple-data execution model] and spatial architectures [e.g.,
tensor processing unit (TPU) based on systolic arrays21], became
the mainstream solutions for accelerating large scale matrix com-
putations in ANNs, combinatorial optimization, compressed
sensing, and digital signal processing17 [in Fig. 1(d)]. However,
as suggested by Amdahl’s law,22 the overall performance gain
from multicore parallelization is limited by diminishing returns;
electronic processors also suffer from the tremendous energy
consumption of the digital transceiver circuits during high-
capacity communication with memory, storage, and peripheral
hardware. In Von Neumann architecture23 processors, during
computation, data and instructions need to be sent to the proc-
essor via input/output (I/O) connections. The energy consump-
tion of digital transmitter and receiver circuits is equivalent to
or much greater than the energy consumption of transistors for
computation in digital logic circuits. The data connections’ en-
ergy consumption reaches the 100 fJ∕bit level (depends on the
distance of the copper connections) and occupies 30% to 50%
of total energy use for heavy-duty matrix computations. From
the perspective of electronics, the effective solution to this
energy consumption is to optimize the processor architectures,
reduce the unnecessary data movements, enable higher density

Fig. 1 Development of processors for matrix computation. (a) Moore’s law no longer seems appli-
cable.16 (b) Exponential growth of energy consumption for more accurate ANN models.17

(c) Development trends of processors.18 (d) Temporal and spatial architectures for multicore par-
allelization.17 (e) Memristor crossbar arrays in post-Moore’s law era.19 (f) Integrated waveguide
meshes for general-purpose matrix computation.20
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integration, and increase the data transmission efficiency.
However, electronic processors are inevitably reaching perfor-
mance limitations in computational power, energy efficiency,
and I/O connections.24

Since electronic processors are approaching their limits, in
post-Moore’s law era, emerging potential analog computation
paradigms, like in-memory computing25 and optical comput-
ing, are being considered to surpass the performance bottle-
neck of electronic processors.26 For example, memristor
crossbar arrays [in Fig. 1(e)] are a typical example of the
in-memory computing paradigm,19 and silicon-based optoelec-
tronic matrix computation based on integrated waveguide
meshes is a typical example of optical computing [in
Fig. 1(f)]. Silicon-based optoelectronic matrix computation
has the following distinct characteristics and is showing great
capabilities and feasibilities, which we will detail in the up-
coming sections.

1. I/O connections: Conventional optical computing prod-
ucts based on discrete optics have been available in the past few
decades, but it is difficult to effectively transmit high-capacity
computational data through the I/O connections. Optical I/O
connections promise to achieve lower than attojoule/bit-level
data connections, and silicon-based optoelectronics will be the
platform to solve this problem.

2. Lower latency: Optical signals propagate in on-chip
large-scale integrated waveguide meshes at a speed close to
the speed of light. Therefore, matrix multiplication can be com-
pleted in the order of picoseconds (two to three orders of mag-
nitude faster than what electronic processors are capable of),
which can dramatically reduce the algorithm time-complexity
of matrix multiplication. Wideband optoelectronic devices (ana-
log bandwidth up to tens of gigahertz, which is one order of
magnitude faster than that of electronic processors) can also
boost information processing, expand the capability of I/O con-
nections, and reduce latency.

3. Lower energy consumption: Coherent detection [equiv-
alent to a series of multiply–accumulate (MAC) operations] in
integrated waveguide meshes is a thermodynamically reversible
process that consumes little energy. However, the MAC opera-
tions in digital logic circuits require sufficient energy (irrevers-
ible digital computation) to switch the binary states of the
transistors in digital logic circuits.26

2 Recent Progress in Silicon-Based
Optoelectronic Matrix Computation

Electronic processors are the mainstream and almost invincible
hardware for general-purpose computation. Most of the novel
research in optical computing published recently can easily be
defeated by digital logic circuits in terms of energy efficiency,
manufacturing cost, and reliability. Even a smartphone can run
complex artificial intelligence applications with extremely low
power consumption.27 Unlike versatile and multi-purpose elec-
tronic processors, optical computing has difficulty achieving
complex and diverse functionalities by simply arranging and
combining basic logical units (just like digital logic circuits con-
sisting of billions of transistors). Optical computing usually
needs to take advantages or specific characteristics of light
waves,28 such as optical field transformation and coherent detec-
tion. By combining electronic, photonic, and optoelectronic de-
vices and circuits together on a silicon substrate, silicon-based
optoelectronic matrix computation is one of the few general-
purpose computations that have the potential to surpass the com-
putation performance of the digital logic circuits in terms of
energy efficiency, computational power, latency, and maintain-
ability. In this section, we will review the recent studies in pho-
tonic matrix computation, including matrix-vector multiplication
(MVM), CONV, and MAC operation. These computations are
closely interrelated, e.g., both MVM and CONV can be achieved
by a series of MAC operation; the CONV between filters and
kernel can be deployed in an MVM processor (in Fig. 2).

2.1 Integrated Waveguide Meshes for MVM

Although nowadays it is possible to achieve quantum informa-
tion processing (QIP) up to tens of qubits, there are still some
inconveniences (e.g., a large amount of space required, need a
lot of discrete optics, work at low temperatures) in achieving
large scale unitary transformation to the quantum states (i.e.,
programming). In 2007, the first photonic integrated two-qubit
control-NOT (CNOT) gate [in Fig. 3(b)] for QIP was demon-
strated on a silicon chip.30 Compared with the bulk-optical
setup [in Fig. 3(a)],29 integrated waveguide meshes are more
robust for practical applications. The photonic QIP chips have
made great progress and are widely employed in quantum en-
crypted communication,41 quantum teleportation, and quantum

Fig. 2 Intuitive visualization showing energy-efficient models processing in the convolutional
neural network. The CONV between the filters and kernel can be deployed into the MVM to
improve efficiency.
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computing.42,43 For example, Fig. 3(c) is the photonic integrated
circuits chip by cascaded Mach–Zehnder interferometers
(MZIs) for programmable QIP;31,44 Fig. 3(d) is the large-scale
chip comprising more than 200 photonic components for 98 dif-
ferent two-qubit operations; Fig. 3(e) is a large scale quantum
circuit with more than 550 photonic components on a single
chip for multidimensional quantum entanglement.

Meanwhile, with the development of silicon-based opto-
electronics technology, programmable linear processors were
developed to meet more applications, such as tunable filter,
microwave photonics, and all-optical switching.45 For example,
optical switching networks [in Fig. 3(f)] can be realized with
different kinds of network topologies programmable linear pro-
cessors in data centers.34 Besides, a hexagonal cell chip [in
Fig. 3(g)] for implementing arbitrary unitary transformations
and signal processing,35,46 microwave photonic signal processor
[in Fig. 3(h)] for continuous radiofrequency filtering and
processing, and self-configuring linear processor [in Fig. 3(i)]
with in-circuit optical power monitors feedback47–50 have also
been reported.

Theoretically, the transfer matrix of lossless integrated wave-
guide meshes is a unitary matrix,51,52 then the unitary MVM can
be performed.53 In recent years, integrated waveguide meshes
became a feasible architecture for large-scale general purpose
MVM computation in post-Moore’s law era. The first ANN
proof-of-concept experiment was performed on 56 cascaded
programmable MZIs meshes in 2017 [in Fig. 3(j)], and a simple
vowel recognition task was demonstrated due to the limited
hardware capability. In 2020, large scale 64 × 64 photonic-
electronic copackaged MVM processors [in Fig. 3(k)] have been

reported by Lightmatter, achieving 99% accuracy in ResNet-50
ImageNet classification.37 To enhance the energy consumption
advantage of the matrix computation, the matrix configuration
of the photonic MVM processor has recently been scaled up to
256 × 256, which also brings about precision problems in com-
putation. The fabrication inconsistency in minuscule MZI devi-
ces will result in the accumulation of computation errors. Mesh
optimizations are suggested to reduce the computation errors to
obtain more accurate results. For example, FFTNet architecture
[in Fig. 3(l)]39 and redundant architecture [in Fig. 3(m)]40 are
both numerically investigated to enhance the robustness and
overcome fabrication imperfections.

2.2 Multiple Light Source MVM

In addition to single light source schemes with a single coherent
laser light source, multiple light source schemes (implemented
with optical frequency comb or multiple wavelength laser ar-
rays) are proposed in recent published studies. These are emerg-
ing methods for improving the signal-to-noise ratio of light
energy and avoiding the influence of laser signal phase jitter.
For example in Fig. 4(a), a microring modulators MVM scheme
with 8 × 107 MAC∕s computational power was experimentally
demonstrated at a clock rate of 10 MHz.54 Figure 4(b) is the
on-chip photorefractive interaction scheme, in which the input
optical signals are sent to the photorefractive interaction region
and then diffract on the photorefractive grating to perform the
MVM operation.55,56 Recently, like the memristor crossbar ar-
rays, photonic TPU and photonic crossbars arrays are becoming
hot topics, both of which are potential architectures for multiple

Fig. 3 Integrated waveguide meshes: from QIP to MVM. (a) Bulk-optical CNOT gate in 2004.29

(b) On-chip photonic CNOT gates in 2007.30 (c) Programmable quantum processor in 2016.31

(d) Large-scale photonic processor for arbitrary two-qubit operations.32 (e) Large-scale photonic
processor for multidimensional quantum entanglement.33 (f) Schematic of optical switch topologies
in the data center.34 (g) Reconfigurable hexagonal mesh for programmable signal processing.35

(h) Photonic “FPGA” for programmable radiofrequency signal processing.36 (i) Self-configuring
4 × 4-port linear processor. (j) First optical computing processor for vowel recognition.20

(k) Large scale 64 × 64 MVM processor.37,38 (l) FFTNet architecture for better fault tolerance
against imprecise components.39 (m) Redundant architecture to overcome fabrication errors.40

Xu and Zhou: Silicon-based optoelectronics for general-purpose matrix computation

Advanced Photonics 044001-4 Jul∕Aug 2022 • Vol. 4(4)



light source MVM computations. For example, Fig. 4(c) is a
simulated photonic tensor core constituted by 16 fundamental
dot product engines (each performs row by column pointwise
MAC) to perform MVM.57 Figure 4(d) is a phase change
material (PCM) assisted photonic crossbar array, the matrix
elements are inscribed in the state of the PCM that patches
on the waveguides, with the laser array vector input, and the
MVM is then performed.58 However, to obtain higher energy
efficiency compared to electronic processors, the scale of the
matrix configuration must be sufficiently large. In our opinion,
the multiple light source MVM scheme may have difficult chal-
lenges in scaling up the matrix configuration due to the lossy
photonic crossbar.

2.3 Fourier Transform-based CONV

CONV can be achieved indirectly by using Fourier transform
(FT) and inverse Fourier transform (IFT) [in Fig. 5(a)]: first,
pad the input sequences with zeros to the output length and
then perform the FT; second, element-wisely multiply the trans-
formed sequence in the Fourier domain; finally, perform IFT to
derive the CONV results. FT can be implemented by passive
photonic devices with the free-space propagation region without
consuming energy, like star coupler [in Fig. 5(b)] and phase-
compensated multimode interferometer (MMI) [in Fig. 5(c)].
The plasmonic structure [in Fig. 5(d)] can offer four to five or-
ders of magnitude of enhanced processing speed due to the
minuscule footprint of the device.61 Moreover, Fig. 5(e) is the
on-chip Cooley-Turkey method FT executing the CONV on
the order of tens of picoseconds short.62 Once the FT device

is realized, then the “4f” CONV system can be realized by using
a cascade of two photonic FT devices with a phase and ampli-
tude filter mask in between. The limitation of FT-based CONV
is that FT devices typically take up large on-chip space due to
the need for free-space propagation. Furthermore, the insertion
loss of the FT-based CONValso leads to restrictions in the ma-
trix configuration and overall energy efficiency.

2.4 Element-wise MAC

Theoretically, both MVM and CONV can be realized by a series
of element-wise MAC operations. For example, a basic 3 × 3
CONV is [in Fig. 6(a)] equivalent to nine MAC operations
or 18 FLOPs. In digital logic circuits, the matrix computation
is sequentially triggered by input clock signals (commonly
<5 GHz). Generally, the element-wise MAC operations aim to
employ wideband optoelectronic devices (e.g., microring mod-
ulators or Mach–Zehnder modulators) to achieve higher speeds
up to tens of gigahertz. Although optoelectronic devices gener-
ally consume more energy than the digital logic circuits, the
higher-speed MAC operations can break through the limited
clock rates in electronic processors, thereby improving the
“single-core performance” of computations and reducing the
latency, or try to use a small amount of photons in analog
element-wise MAC operation to break the energy limit of the
digital computation paradigm.

Element-wise MAC operations can be realized by balanced
homodyne detection, microring modulators, and cascaded mod-
ulators arrays. For balanced homodyne detection [in Fig. 6(b)],
input data are optically fanned out to channels, and each

Fig. 4 Multiple laser source MVM. (a) MVM based on microring modulators.54 (b) MVM based
on on-chip photorefractive interaction.55,56 (c) Photonic tensor core constituted by dot-product
engines.57 (d) Photonic crossbar arrays with phase-change material.58
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detector functions as a photoelectric multiplier, calculating the
homodyne product and accumulating the multiplication results.
The theoretical equivalent energy consumption of analog
MAC can break through Landauer’s limits in the digital para-
digm (∼2.7 aJ∕MAC at 300 K) and reach as low as the
50 zJ∕MAC level.63 For the cascaded acousto-optical modulator

arrays [in Fig. 6(c)], with the high linearity (∼30 dBc signal-to-
distortion ratio) acousto-optic modulation, the FASHION-
MNIST classification task is performed, and the accuracy is
examined similar to a 64-bit computer at a modulation speed
lower than MHz.64 Although the acousto-optic modulation is
limited in bandwidth, the microring scheme with electro-optic

Fig. 5 FT-based CONV. (a) Flowchart of CONV using FT. (b) FT based on MMI coupler and com-
pensating phase shifter arrays.59 (c) FT operation with 21 × 21-star coupler.60 (d) Compact surface
plasmon polaritons device for FT.61 (e) CONV based on Cooley–Tukey method FT.62

Fig. 6 Element-wise MAC operations. (a) Basic 3 × 3 CONV consisting of nine MAC operations.
(b) MAC based on balanced homodyne detection.63 (c) MAC based on cascaded acousto-optical
modulators.64 (d) MAC based on microring modulators.65
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modulation [in Fig. 6(d)] is promising for higher-speed
operations.65

2.5 Dispersion-based MAC

The photonic matrix computation can be achieved by
dispersion-based MAC, in which the dispersion manipulation
is usually conducted with linearly dispersive photonic wave-
guides (or optical fibers) and broad-spectrum laser source (or
ultrashort laser pulses). For example, the reconfigurable time-
wavelength plane manipulation scheme [in Fig. 7(a)] was pro-
posed by employing a 1.1-km long dispersion fiber and 18-GHz
FSR optical frequency comb to realize the 118 GigaMAC∕s
MAC operation, which is equivalent to 2.69 GigaMAC∕s
4 × 4 MVM and 0.5 GigaMAC∕s 32 × 32 CONV operation.66

Similarly, photonic perceptron [in Fig. 7(d)], conducted with
a 13-km spool of standard single-mode fiber and 49-wavelength
49 GHz-FSR soliton crystal microcombs, was proposed to
achieve 11.9 GigaFLOPs (8 bit/FLOP) MAC operations.67

Figure 7(c) was a time-stretch architecture employing mode-
locked ultrashort pulses, the ultrashort pulses were first
broadened by a dispersive fiber, then modulated, and finally
compressed by another reversely dispersive fiber to realize
the MAC operations.68 Figure 7(d) is a potentially 400-GHz
bandwidth temporal MAC operation operated by a hydex spiral
waveguide with linear group dispersion; with a dispersive pho-
tonic waveguide, temporal CONV can be realized with 200-ps
operating time and 300-fs resolution.69

3 Discussions and Perspectives

3.1 Optical Interconnections in Computation Hardware

In Von Neumann architecture processors, the memory-processor
interconnections are one of the major factors influencing the
overall performance [in Fig. 8(a)], especially in data-intensive
applications. For example, large scale matrix multiplication

(such as 1024 × 1024, 2048 × 2048, 4096 × 4096) usually de-
composes into multiple small-scale matrix multiplication (such
as 64 × 64, 128 × 128, 256 × 256) during processing [in
Fig. 8(b)], and memory circuits are always needed for storing
temporary results.71 However, in past decades, a growing per-
formance gap between processor performance and memory
bandwidth, i.e., the “memory wall” problem, has hindered
high-performance computation.73

Electronic processors are also suffering from the tremendous
energy consumption of digital transceiver circuits during mas-
sive data I/O connections. Increasing the memory-processor
bandwidth and energy efficiency in interconnections is an
effective way to diminish the data movement problem.74 For ex-
ample, in cloud data centers where GPUs are the mainstream
hardware for ANN acceleration, Nvidia developed NVlink
connections for increasing the interface bandwidth of GPU
interconnections (up to Tb/s).75 However, when the bandwidth
exceeds 10 Tb∕s, the energy budgets of electrical interconnec-
tions will exceed the expectations, which is unacceptable.76–78

Instead of power-hungry electronic transceiver circuits, on-
chip optical transceivers are good alternatives for low-energy-
budget interconnections and boosting the data movement among
the processors, memory, and peripheral hardware72 [in Fig. 8(c)].
Therefore, it is necessary to heterogeneously integrate photonic,
optoelectronic, and electronic devices and circuits on the silicon
substrate. Recently many studies have been performed to realize
optical interconnections on a photonic-electronic integrated plat-
form. For example, in 2015, photonic-electronic integration was
demonstrated on a silicon chip, which integrated over 70 million
transistors and 850 photonic components that work together to
demonstrate aggregated 55 Gb∕s memory bandwidth intercon-
nections.79 In 2018, an optimized (with polycrystalline silicon)
monolithic photonic-electronic integrated system on a silicon
chip led to potentially >2 ðTb∕sÞ∕mm2 bandwidth densities,
and the total electrical energy consumptions of the optical trans-
mitter and receiver are 100 and 500 fJ∕bit, respectively.80

Fig. 7 MAC based on dispersion. (a) The 118 GigaMAC/s matrix operation is realized by 1.1-km
long linear dispersion fiber.66 (b) 11.9 GigaFLOPs/s MAC conducted with 13-km spool of standard
single-mode fiber.67 (c) Time-stretch method for MAC operations.68 (d) Temporal CONV (a series
of MAC) by spiral waveguide with linear group dispersion.69
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3.2 Photonic-Electronic Integration

Optical computing has a history of nearly 70 years,81 and the op-
tical computing products and studies with bulk optical systems
have showed great potential in matrix computations. For exam-
ple, Fig. 9(a) is anMVM processor released in 2003 with a 256 ×
256 pixel resolution spatial light modulator (SLM), which has
8000 GigaMAC∕s equivalent computational power;82 Fig. 9(b)
is a bulk-optical 4f system that could be adapted to implement
CONV by placing a phase mask in the Fourier plane;83 Fig. 9(c) is
a diffractive deep neural network for image classification with
3D-printed multilayer phase plates.84 However, the application
of optical computing processors is not as popular as using elec-
tronic processors. Bulk optical systems have many problems in
terms of their computation precision, maintainability, and mass
production. For example, when the bulk-optical system encoun-
ters slight vibration, the optical components may be misaligned
and cause devastating problems in computation precision.

Silicon-based optoelectronics is a photonic-electronic inte-
grated platform that avoids the inconvenience of discrete optics;
mature CMOS manufacturing processing and packaging can
achieve mass production, which is an advantage that conven-
tional optical computing does not have. Photonic-electronic
copackaging [in Fig. 9(d)] is an emerging technology for com-
prehensive computation hardware system and enhancing the
interaction between photonic core and electronic application-
specific integrated circuits (ASICs).34 For example, a large-scale
64 × 64 copackaged MVM processor has been reported with

14-nm process ASICs chips and 90-nm process photonic core,
which achieve high-performance MVM computing.37,38 By ex-
ploiting the advantages of light in linear matrix computations,
the photonic core is excellent at disruptively improving the com-
puting performance, while the electronic circuits are necessary
for performing other nonlinear operations, such as driver cir-
cuits, arithmetic and logic, data storage, and activation function.
In addition, thousands of on-chip photonic and optoelectronic
devices, like optical modulators, photo-detectors, and MZIs,
need to be precisely controlled and assisted by electronic cir-
cuits, such as modulator drivers, trans-impedance amplifiers
(TIAs), serial-parallel converters, and analog-digital converters.

3.3 Larger Scale General Purpose Matrix Computation

When encountering a computation problem, before considering
optical computing, it should be considered whether it will be
faster, more economical, more energy-efficient, or more reliable
than using existing electronic processors or designing new spe-
cific digital logic circuits. Silicon-based optoelectronic matrix
computation processors should directly compete with its rivals,
such as multicore electronic processors (such as the existing
GPU, TPU, and ASIC).85,86 By combining electronic, photonic,
and optoelectronic devices and circuits together, silicon-based
optoelectronic matrix computation is one of the few general-
purpose computations that have the potential to surpass the com-
putation performance of the electronic processors. In digital

Fig. 8 Interconnections in processors, memory, and peripheral hardware. (a) The memory-proc-
essor interconnections are one of the major factors influencing the overall performance and the
memory wall problem that has hindered high-performance computing.70 (b) Large-scale matrix
multiplication is decomposed into small-scale matrix multiplications while processing.71 (c) On-chip
optical transceivers are good alternatives for low-energy-budget interconnections and boosting
the data movement among the computation hardware.72
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electronic MVM processors, with larger matrix configuration,
energy consumption increased proportionally to the area of the
matrix (i.e., total number of elements in a matrix), and the en-
ergy consumption per MAC with FP16 or bfloat16 precision is
about 10−12 Joules [in Fig. 10(b)].87 In contrast, one distinctive
feature is that the photonic matrix computation is realized by
thermodynamically reversible coherent detection, which does
not consume any energy, and the total energy consumption of
matrix computation processors is merely proportional to the
matrix side-length (i.e., the number of elements in a column/
row or the number of input optical modulator arrays). The
equivalent energy consumption per MAC operation decreases
linearly as the side-length increases.63,88,89

With larger matrix configuration, the advantages in total
computational power, energy efficiency, and latency will be

further enhanced; although thermally maintaining the static pho-
tonic matrix will consume additional energy, this static energy
consumption problem can be well solved, e.g., silicon substrate
removal is doable to improve the thermal modulation efficiency
and reduce the static energy consumption. Considering the en-
tire computation systems including photonic, optoelectronic,
and electronic devices and circuits, some empirical evaluation
results indicate that silicon-based optoelectronic matrix compu-
tation will outperform digital logic circuits in terms of energy
efficiency when the matrix configuration exceeds 128 × 128 [in
Fig. 10(a)]. Recently, the matrix configuration of the silicon-
based optoelectronic matrix computation processor is scaled
up to 256 × 256. The manufacturing and packaging of larger-
scale chips are the major challenges for photonic matrix com-
putation.

Fig. 9 Optical computing from bulk-optics to photonic-electronic integration. (a) SLM-based
MVM processor released by Enlight in 2003.82 (b) Bulk-optical 4f-system for convolutional neural
network.83 (c) Diffractive deep neural network by 3D-printed multi-layer phase mask.84 (d) 3D
copackaged module for enhancing the interaction between the photonic core and electronic
ASIC.34

Fig. 10 Energy efficiency of silicon-based optoelectronic matrix computation processor (consider
all the photonic, optoelectronic, and electronic devices and circuits). (a) The equivalent energy
efficiency (energy consumption per MAC operation) linearly decreases as the side-length of
the matrix increases.63 (b) Expectations of future compute density and energy efficiency in
silicon-based optoelectronic matrix computation (the energy efficiency depends on the matrix
configuration).
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3.4 Improve Computation Density and Computation
Precision

In silicon-based optoelectronic matrix computation processors,
increasing the modulation bandwidth is an intuitive way to
further improve computational power density per unit area.
Although on-chip optoelectronic devices can reach modulation
speeds of tens of gigahertz, passive components have limited
dynamic response (<1-MHz bandwidth). Modulation speed
mismatch is inevitable, and high-speed modulation is not
considered to avoid high insertion loss in a large-scale passive
photonic matrix. From our perspective, distributed computing
may be possible to meet the requirements of larger-scale matrix
multiplication, which means to increase the number of small
photonic matrices, and then the large-scale matrix computation
can also be realized without increasing the modulation rate of
the optical matrices.

Furthermore, integrated waveguide meshes are mostly con-
structed from individual MZI devices, and the footprint of the
MZI is commonly about 2500 μm2. Reducing the MZI footprint
will help increase the computation density, scale up the matrix
configuration, and reduce the production cost of the photonic
core. For example, improving the modulation efficiency of
the MZI phase shifter can reduce the length of the MZI arms;
employing surface plasmon polaritons or hybrid plasmon polar-
itons devices can break through the diffraction limit of light
and reduce the area of fundamental devices.90,91

Computation precision plays an important role in analog
computation. With a larger scale matrix configuration (e.g.,
from 64 × 64, 128 × 128 to 256 × 256), the optical intensity in
the integrated waveguide mesh is gradually diluted. Moreover,
the fabrication inconsistency in minuscule devices will result in
the accumulation of computation errors. Recently, silicon-based
optoelectronic matrix computation processors tend to merely
perform unitary matrix multiplication (singular value multipli-
cation can be performed in electronic circuits). In unitary matrix
multiplications, the energy of light is almost conserved without

excess energy loss, which is beneficial to improving the signal-
to-noise ratio and computation accuracy of matrix multipli-
cation. Moreover, a specific redundant architecture or mesh
architecture can be employed to overcome the fabrication im-
perfections and achieve more robust matrix computation. The
computation precision needs to be enhanced with further re-
search and development.

3.5 Matrix Computation for Lower-Precision-
Requirement Applications

Hardware development (processor design and production) and
software development (algorithm and applications) are gener-
ally carried out separately, and matrix computation processors
usually have a standard application programming interface to
be utilized for software development. Higher precision is a
long-standing pursuit for computation hardware. It is convenient
for an electronic processor to achieve 64-bit double-precision
arithmetic. However, it is impossible to achieve such high pre-
cision in analog processors. At the current stage precision prob-
lems remain in silicon-based optoelectronic matrix computation
processors, as computation errors are inevitable in analog com-
putation paradigms. We need to find some applications with
lower precision requirements that can run on the general-
purpose processors. Although it is difficult for silicon-based
optoelectronic matrix computation processors to solve high-
precision arithmetic or global optimization problems, heuristic
algorithms can be developed to effectively search a near-optimal
solution at a reasonable compute cost in a lower-precision proc-
essor. Silicon-based optoelectronic matrix computation process-
ors are feasible for solving some difficult problems and reducing
their time-complexity, like nondeterministic polynomial (NP)
time decidable/solvable problems. A certain degree of compu-
tation errors can be tolerated in the heuristic algorithms, and the
slight computation inaccuracy does not affect the result.

For example, Ising models are NP-complete problems in
combinatorial optimization, and finding a minimal energy state

Fig. 11 Photonic matrix computation can be used for solving some difficult problems and reducing
their time complexity. (a) Heuristic recurrent algorithm for the annealing of Ising models.
(b) Reconstruction of K -sparse signals in compressed sensing. (c) Very large-scale discrete
Fourier transform.
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of the Ising model (i.e., annealing) is NP-hard. Commonly, the
minimal energy state of Ising models can be solved in digital
processors (with heuristic algorithms) or quantum computers
(with quantum annealing). Bulk-optical computing systems
(such as optical fiber loops92 and spatial light modulators93) have
been invented and developed to accelerate the annealing of the
Ising model. A Hopfield neural network is a recurrent neural
network, in which the MVM (between the binary state vector
and weight matrix) can be effectively accelerated in an
MVM processor with lower time complexity. By parametrically
designing the evolution dynamics of the Hopfield neural net-
work and mimicking the interactions within the nodes [in
Fig. 11(a)],94 the Ising model can spontaneously evolve to an
acceptable low-energy state.

In compressed sensing [in Fig. 11(b)] applications, with
known measurement value y and the measurement matrix A,
the underdetermined equations y ¼ AΘ need to be solved to
obtain the original K-sparse coefficient vector Θ. The re-
construction of sparse coefficient vector Θ can be solved by
l0 norm minimization, i.e., min kΘk0, subject to AΘ ¼ y. The
l0 norm minimization is also NP-hard, i.e., the times of linear
measurements (matrix multiplications) in K-sparse signal re-
construction are OðK × log NÞ, which needs to be accelerated
with photonic matrix computation.95

Similarly, discrete FT (DFT) [in Fig. 11(c)] is a frequently-
used operation in digital signal processing and speech recogni-
tion.96 Normally, the time complexity of the DFT algorithm by
unitary matrix multiplication is OðN2Þ, and the time complexity
of the Cooley–Tukey method DFT is OðN × log NÞ. However,
the time complexity of the photonic DFT matrix multiplication
is only Oð1Þ, which is of great significance for reducing energy
consumption and time latency.97

4 Summary
We reviewed the recent research on silicon-based optoelectronic
matrix computations, including MVM, CONV, and MAC oper-
ations. Conventional electronic processors are still the main-
stream and almost invincible hardware that is based on
digital logic circuits for computation. When designing new op-
tical computing processors (or coprocessors) for computation,
the computation performance needs to outperform the digital
logic circuits in terms of computational power, energy effi-
ciency, I/O connections, and latency. Although computation
errors are inevitable in analog computation paradigms, lower-
precision-requirement applications (e.g., ANN, combinatorial
optimization, compressed sensing, digital signal processing,
and quantum information processing) can be run on the gen-
eral-purpose matrix computation processors. Looking forward
to the future of large-scale matrix computation in specific ap-
plications, the silicon-based optoelectronic platform can not
only heterogeneously integrate photonic (e.g., integrated wave-
guide mesh, free space propagation region, and dispersive wave-
guides), optoelectronic (e.g., high-speed modulators and
photodetectors), and electronic (e.g., memory circuits, driver
circuits, TIAs, serial-parallel converters, and analog-digital con-
verters) devices and circuits on a silicon substrate to fulfill the
requirements of large scale matrix computation, but can also
boost the low-energy-budget data movement among the pro-
cessors, memories, and peripheral hardware. We believe that
silicon-based optoelectronics is a promising and comprehensive
platform for general-purpose matrix computation in the post-
Moore’s law era.
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